Elementary Steps in Ammonia Synthesis

The surface science approach
Part of the Fundamental and Applied Catalysis book series (FACA)


The net rate of a chemical reaction is determined by its mechanism, i.e., the sequence of elementary processes involved, and any attempt to gain real insight into the progress of a chemical transformation has therefore to start by studying the reaction intermediates and their individual kinetic, energetic, and structural properties on an atomic level. In heterogeneous catalysis this task is hampered in several ways: The conventional techniques used in investigations of homogeneous reactions are frequently only of limited applicability, and the catalyst surface is usually rather inhomogeneous (both structurally and chemically). Furthermore, its composition may differ considerably from that of the bulk. For these reasons information on the elementary steps of heterogeneously catalyzed reactions remained rather restricted for a long period of time. Emmett(1) concluded in a lecture on “Fifty years of progress in the study of the catalytic synthesis of ammonia” at a meeting held in 1974: “The experimental work of the past 50 years leads to conclusion that the rate-determining step in ammonia synthesis over iron catalysts is the chemisorption of nitrogen.... The question as to whether the nitrogen species involved on the surface is molecular or atomic is still not conclusively resolved, though, in the writer’s opinion, the direct participation of nitrogen in an atomic form seems more likely than that in a molecular form.”


Adsorption Energy Temperature Program Desorption Surface Species Elementary Step Nitrogen Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. H. Emmett, in: The Physical Basis for Heterogeneous Catalysis (E. Drauglis and R. I. Jaffee, eds.), p. 3, Plenum Press, New York (1975).CrossRefGoogle Scholar
  2. 2.a.
    A. Ozaki and K. Aika, in: Catalysis. Science and Technology (J. R. Anderson and M. Boudart, eds), Vol. 1, p. 88, Springer-Verlag, Berlin (1981).Google Scholar
  3. b.
    G. Ertl, in: Catalysis. Science and Technology (J. R. Anderson and M. Boudart, eds.), Vol. 4, p. 209, Springer-Verlag, Berlin (1983).CrossRefGoogle Scholar
  4. c.
    M. Grunze, in: The Chemistry and Physics of Solid Surfaces and Heterogeneous Catalysis (D. A. King and D. P. Woodruff, eds), Vol. 4, p. 413, Elsevier, Amsterdam (1982).Google Scholar
  5. d.
    G. Ertl, Catal. Rev. Sci. Eng. 21, 201 (1980).CrossRefGoogle Scholar
  6. e.
    G. Ertl, J. Vac. Sci. Technol. A1, 1247 (1983).Google Scholar
  7. f.
    G. Ertl, CRC Crit. Rev. Solid State Mater. Sci. 3, 349 (1982).Google Scholar
  8. 3.
    G. Ertl, D. Prigge, R. Schloegl, and M. Weiss, J. Catal. 79, 359 (1983).CrossRefGoogle Scholar
  9. 4.
    Z. Páal, G. Ertl, and S. B. Lee, Appl. Surf. Sci. 8, 231 (1981).CrossRefGoogle Scholar
  10. 5.a.
    R. Brill, Ber. Bunsenges. Phys. Chem. 15, 455 (1971).Google Scholar
  11. b.
    R. Brill, E. L. Richter, and E. Ruch, Angew. Chem. 6, 882 (1967).Google Scholar
  12. 6.a.
    J. A. Dumesic, H. Topsoe, S. Khammouma, and M. Boudart, J. Catal. 37, 503 (1975).CrossRefGoogle Scholar
  13. b.
    J. A. Dumesic, H. Topsoe, and M. Boudart, J. Catal. 37, 513 (1975).CrossRefGoogle Scholar
  14. 7.
    N. D. Spencer, R. C. Schoonmaker, and G. A. Somorjai, J. Catal. 74, 129 (1982).CrossRefGoogle Scholar
  15. 8.
    D. D. Strongin, J. Carrazza, S. R. Bare, and G. A. Somorjai, J. Catal. 103, 213 (1987).CrossRefGoogle Scholar
  16. 9.a.
    D. R. Strongin, S. R. Bare, and G. A. Somorjai, J. Catal. 103, 289 (1987).CrossRefGoogle Scholar
  17. b.
    S. R. Bare, D. R. Strongin, and G. A. Somorjai, J. Phys. Chem. 90, 4726 (1986).CrossRefGoogle Scholar
  18. c.
    D. R. Strongin and G. A. Somorjai, Catal. Lett. 1, 61 (1988).CrossRefGoogle Scholar
  19. 10.
    G. Ertl, M. Huber, S. B. Lee, Z. Páal, and M. Weiss, Appl. Surf Sci. 8, 373 (1981).CrossRefGoogle Scholar
  20. 11.a.
    G. A. Somorjai, Chemistry in Two Dimensions: Surfaces’, Cornell University Press, Ithaca (1981).Google Scholar
  21. b.
    G. Ertl and J. Küppers, Low Energy Electrons and Surface Chemistry, 2nd edn., Verlag Chemie, Weinheim (1985).Google Scholar
  22. 12.
    K. Christmann, Surf. Sci. Rep. 9, 1 (1988). Provides a general extensive review on the interaction of hydrogen with solid surfaces.Google Scholar
  23. 13.
    E. A. Kurz and J. B. Hudson, Surf Sci. 195, 15, 31 (1988).CrossRefGoogle Scholar
  24. 14.
    F. Bozso, G. Ertl, M. Grunze, and M. Weiss, Appl. Surf Sci. 1, 103 (1977).CrossRefGoogle Scholar
  25. 15.
    G. Wedler, K. P. Geuss, K. G. Colb, and G. McElhiney, Appl. Surf Sci. 1, 471 (1978).CrossRefGoogle Scholar
  26. 16.
    J. P. Muscat, Surf Sci. 110, 389 (1981); 118, 321 (1982).CrossRefGoogle Scholar
  27. 17.
    R. Imbihl, R. J. Behm, K. Christmann, G. Ertl, and T. Matsushima, Surf Sci. 117, 257 (1982).CrossRefGoogle Scholar
  28. 18.a.
    W. Kinzel, W. Selke, and K. Binder, Surf Sci. 121, 13 (1982).CrossRefGoogle Scholar
  29. b.
    W. Selke, W. Kinzel, and K. Binder, Surf. Sci. 125, 74 (1983).CrossRefGoogle Scholar
  30. 19.
    W. Moritz, R. Imbihl, R. J. Behm, G. Ertl, and T. Matsushima, J. Chem. Phys. 83, 1959 (1985).CrossRefGoogle Scholar
  31. 20.a.
    E. Shustorovich, Surf Sci. Rep. 6, 1 (1986). b. P. Nordlander, S. Holloway, and J. K. N0rskov, Surf Sci. 136, 59 (1984).CrossRefGoogle Scholar
  32. 21.
    A. M. Baro and W. Erley, Surf Sci. 112, L759 (1981).CrossRefGoogle Scholar
  33. 22.a.
    G. Ertl, S. B. Lee, and M. Weiss, Surf Sci. 111, L711 (1981). b. J. Benzinger and R. J. Madix, Surf Sci. 94, 119 (1980).CrossRefGoogle Scholar
  34. 23.
    M. Grunze, M. Golze, J. Fuhler, M. Neumann, and E. Schwarz, Proc. 8th Int. Cong, on Catalysis, p. IV-133, Verlag Chemie, Weinheim (1984).Google Scholar
  35. 24.
    M. Grunze, G. Strasser, and M. Golze, Appl. Phys. A44, 19 (1987).Google Scholar
  36. 25.
    M. Grunze, M. Golze, W. Hirschwald, H. J. Freund, H. Pulm, U. Seip, M. C. Tsai, G. Ertl, and J. Küppers, Phys. Rev. Lett. 53, 850 (1984).CrossRefGoogle Scholar
  37. 26.
    L. J. Whitman, C. E. Bartosch, W. Ho, G. Strasser, and M. Grunze, Phys. Rev. Lett. 56, 1984 (1986).CrossRefGoogle Scholar
  38. 27.
    D. Tomanek and K. H. Bennemann, Phys. Rev. B31, 2488 (1985).Google Scholar
  39. 28.
    H. J. Freund, B. Bartos, R. P. Messmer, M. Grunze, H. Kuhlenbeck, and M. Neumann, Surf. Sci. 185, 187 (1987).CrossRefGoogle Scholar
  40. 29.
    G. Ertl, S. B. Lee, and M. Weiss, Surf. Sci. 114, 515 (1982).CrossRefGoogle Scholar
  41. 30.
    M. C. Tsai, U. Seip, I. C. Bassignana, J. Küppers, and G. Ertl, Surf. Sei. 155, 387 (1985).CrossRefGoogle Scholar
  42. 31.
    G. Wedler, D. Borgmann, and K. P. Geuss, Surf Sei. 47, 592 (1975).CrossRefGoogle Scholar
  43. 32.
    F. Boszo, G. Ertl, M. Grunze, and M. Weiss, J. Catal. 49, 18 (1977).CrossRefGoogle Scholar
  44. 33.
    F. Boszo, G. Ertl and M. Weiss, J. Catal. 50, 519 (1977).CrossRefGoogle Scholar
  45. 34.
    R. Imbihl, R. J. Behm, G. Ertl, and W. Mortiz, Surf. Sei. 123, 129 (1982).CrossRefGoogle Scholar
  46. 35.
    P. A. Dowben, M. Grunze, and R. G. Jones, Surf. Sei. 109, L519 (1981).CrossRefGoogle Scholar
  47. 36.
    P. H. Emmett and S. Brunauer, J. Am. Chem. Soc. 56, 35 (1934).CrossRefGoogle Scholar
  48. 37.
    J. J. Schölten, P. Zwietering, J. A. Konvalinka, and J. H. de Boer, Trans. Faraday Soc. 55, 2166 (1959).CrossRefGoogle Scholar
  49. 38.
    J. Böheim, W. Brenig, T. Engel, and U. Leuthäusser, Surf. Sei. 131, 258 (1983).CrossRefGoogle Scholar
  50. 39.
    L. J. Whitman, C. E. Bartosch, and W. Ho, J. Chem. Phys. 85, 3688 (1986).CrossRefGoogle Scholar
  51. 40.
    C. T. Rettner and H. Stein, Phys. Rev. Lett. 59, 2768 (1987).CrossRefGoogle Scholar
  52. 41.
    G. Haase, M. Asscher, and R. Kosloff, J. Chem. Phys. 90, 3346 (1989).CrossRefGoogle Scholar
  53. 42.
    G. Ertl, M. Weiss, and S. B. Lee, Chem. Phys. Lett. 60, 391 (1979).CrossRefGoogle Scholar
  54. 43.
    G. Ertl, S. B. Lee, and M. Weiss, Surf. Sei. 114, 527 (1982).CrossRefGoogle Scholar
  55. 44.a.
    S. Holloway, B. I. Lundqvist, and J. K. N0rskov, Proc. 8th Int. Cong, on Catalysis, p. IV-85, Verlag Chemie, Weinheim.Google Scholar
  56. b.
    J. K. Nørskov, S. Holloway, and N. D. Lang, Surf. Sci. 137, 65 (1984).CrossRefGoogle Scholar
  57. c.
    N. D. Lang, S. Holloway, and J. K. Norskov, Surf Sci. 150, 24 (1985).CrossRefGoogle Scholar
  58. 45.
    M. Grunze, F. Bozso, G. Ertl, and M. Weiss, Appl. Surf. Sei. 1, 241 (1978).CrossRefGoogle Scholar
  59. 46.
    M. Weiss, G. Ertl, and F. Nitschke, Appl. Surf Sei. 2, 614 (1979).CrossRefGoogle Scholar
  60. 47.
    W. Erley and H. Ibach, J. Electron Spectrosc. 31, 61 (1983); Surf Sci. 119, L357 (1982).CrossRefGoogle Scholar
  61. 48.a.
    K. Hermann, Proc. 4th Int. Conf. on Solid Surfaces, p. 196, Suppl. Le Vide, Cannes (1980).Google Scholar
  62. b.
    H. Itoh, G. Ertl, and A. B. Kunz, Z. Naturforsch. 36a, 347 (1981).Google Scholar
  63. 49.
    M. Grunze, Surf Sci. 81, 217 (1979).CrossRefGoogle Scholar
  64. 50.
    I. C. Bassignana, K. Wagemann, J. Küppers, and G. Ertl, Surf Sci. 175, 22 (1986).CrossRefGoogle Scholar
  65. 51.
    K. Yoshida and G. A. Somorjai, Surf. Sci. 75, 46 (1978).CrossRefGoogle Scholar
  66. 52.
    W. Reimer, Diploma thesis, Univ. München (1986).Google Scholar
  67. 53.
    M. Drechsler, H. Hoinkes, H. Kaarmann, H. Wilsch, G. Ertl, and M. Weiss, Appl. Surf Sei. 3, 217 (1979).CrossRefGoogle Scholar
  68. 54.
    D. G. Löffler and L. D. Schmidt, J. Catal. 44, 244 (1976).CrossRefGoogle Scholar
  69. 55.
    G. Ertl and M. Huber, J. Catal. 61, 537 (1980).CrossRefGoogle Scholar
  70. 56.
    G. Ertl, M. Huber, and N. Thiele, Z Naturforsch. 34a, 30 (1979).Google Scholar
  71. 57.
    M. Boudait, Catal. Rev. Sci. Eng. 23, 1 (1981).CrossRefGoogle Scholar
  72. 58.
    M. I. Temkin and V. Pyzhev, Acta Physicochim. USSR 12, 489 (1940).Google Scholar
  73. 59.
    M. Boudart and G. Djéga-Mariadassou, Kinetics of Heterogeneous Catalytic Reactions. Princeton University Press, Princeton, N.J. (1984) provides a detailed discussion of the Temkin formalism.Google Scholar
  74. 60.
    M. Boudait, Ind. Chim. Belge 19, 489 (1954).Google Scholar
  75. 61.
    M. Boudait, Catal. Lett. 1, 21 (1988).CrossRefGoogle Scholar
  76. 62.
    M. Bowker, I. Parker, and K. Waugh, Appl. Catal 14, 101 (1985).CrossRefGoogle Scholar
  77. 63.
    M. Bowker, I. Parker, and K. Waugh, Surf. Sci. 97, L223 (1988).CrossRefGoogle Scholar
  78. 64.
    P. Stoltze and J. K. Nørskov, Phys. Rev. Lett. 55, 2502 (1985); Surf. Sci. 189/190, 91 (1987); Surf. Sci. 197, L230 (1988); J. Catal. 110, 1 (1988).CrossRefGoogle Scholar
  79. 65.
    P. Stoltze, Phys. Scr. 36, 824 (1987).CrossRefGoogle Scholar
  80. 66.
    J. R. Anderson and M. Boudait (eds.), Catalysis, Science and Technology, Vol. 4, p. VIII, Springer-Verlag, Berlin (1983).Google Scholar
  81. 67.
    R. Schloegl, R. C. Schoonmaker, M. Muhler, and G. Ertl, Catal. Lett. 1, 237 (1988).CrossRefGoogle Scholar
  82. 68.
    J. A. Dumesic and A. A. Trevino, J. Catal. 116, 119 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • G. Ertl
    • 1
  1. 1.Fritz-Haber-InstitutMax-Planck-GesellschaftBerlin 33Federal Republic of Germany

Personalised recommendations