Preparation and Activation of the Technical Ammonia Synthesis Catalyst

  • Robert Schlögl
Part of the Fundamental and Applied Catalysis book series (FACA)


This chapter may be opened by two statements from the scientific literature.

“The active catalyst for the ammonia synthesis is alpha iron with small amounts of oxidic additives.... The quality of the final catalyst is crucially influenced by the activation process which is the reduction of magnetite to metallic iron. It is important to minimise the concentration of the reaction product water which is a catalyst poison.”(1)

“... shows how the pore size distribution of the KM 1 catalyst varies with reduction temperature.... The peak of small pores represents a pore system formed by the reduction of magnetite, while the system of larger pores is formed by the reduction of wustite... the surface area of the catalyst reduced at higher temperature is smaller than of that reduced at a lower temperature.”(2)


Metallic Iron Catalyst Precursor Core Level Spectrum Iron Metal Ammonia Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Büchner, R. Schlibs, G. Winter, and K. H. Biichel, in: Industrielle Anorganische Chemie, p. 34, VCH, Weinheim, New York (1986).Google Scholar
  2. 2.
    A. Nielsen, Catal. Rev. Sci. Eng. 23, 17 (1981).CrossRefGoogle Scholar
  3. 3.
    A. Mittasch, DRP 254 437 (1910).Google Scholar
  4. 4.
    A. Ozaki and K. Akai, in: Catalysis: Science and Technology (J. R. Anderson and M. Boudart, eds.), Vol. 1, p. 107 ff, Springer, New York (1981).Google Scholar
  5. 5.
    A. F. Wells, Structural Inorganic Chemistry, 4th ed., p. 489 ff, Oxford University Press (1975).Google Scholar
  6. 6.
    C. Peters, K. Schäfer, and P. Krabetz, Z Elektrochem. 64, 1194 (1960).Google Scholar
  7. 7.
    M. E. Dry, J. A. K, Du Plessis, and G. M. Leuteritz, J. Catal. 6, 194 (1966).CrossRefGoogle Scholar
  8. 8.
    P. H. Emmett and S. Brunnauer, J. Am. Chem. Soc. 59, 1553 (1937).CrossRefGoogle Scholar
  9. 9.
    K. Schäfer, Z Elektrochem. 64, 1191 (1960).Google Scholar
  10. 10.
    R. Krabetz and C. Peters, Angew. Chem. 77, 333 (1965).CrossRefGoogle Scholar
  11. 11.
    G. Ertl, D. Prigge, R. Schlögl, and M. Weiss, J. Catal. 79, 359 (1983).CrossRefGoogle Scholar
  12. 12.
    D. R. Strongin, S. R. Bare, and G. A. Somorjai, J. Catal. 103, 289 (1987).CrossRefGoogle Scholar
  13. 13.
    B. S. Clausen, S. Morup, H. Topsoe, R. Candia, E. J. Jensen, A. Baranski, and A. Pattek, J. Phys. (Paris) 37, C245 (1976).CrossRefGoogle Scholar
  14. 14.
    H. Topsoe, J. A. Dumesic, and S. Morup, in: Application of Mossbauer Spectroscopy, Vol. 2, p. 55 ff, Academic Press, New York (1980).Google Scholar
  15. 15.
    H. Ludwiczek, A. Preisinger, A. Fischer, R. Hosemann, A. Schönfeld, and W. Vogel, J. Catal. 80, 194 (1978).Google Scholar
  16. 16.
    R. Hosemann, A. Preisinger, and W. Vogel, Ber. Bunsenges. Phys. Chem. 70, 797 (1966).Google Scholar
  17. 17.
    W. S. Borghard and M. Boudait, J. Catal. 80, 194 (1983).CrossRefGoogle Scholar
  18. 18.
    A. Nielsen, An Investigation of Promoted Iron Catalysts for the Synthesis of Ammonia, 3rd edn., Chapter 8, Jul Gjellerups Forlag, Copenhagen (1968).Google Scholar
  19. 19.
    G. Ertl and N. Thiele, Appl. Surf. Sci. 3, 99 (1979).CrossRefGoogle Scholar
  20. 20.
    W. L. Roth, Acta Crystallogr. 13, 140 (1960).CrossRefGoogle Scholar
  21. 21.
    S. Mrowec, Metallugria i Odlewnictwo 13, 7 (1984).Google Scholar
  22. 22.
    G. V. Samsonow (ed.), The Oxide Handbook, 2nd edn., p. 24, Plenum Press, New York (1982).Google Scholar
  23. 23.
    T. L. Joseph, Trans. AJME. 120, 72 (1936).Google Scholar
  24. 24.
    P. K. Stangway and H. U. Ross, Trans. AJME. 242, 1981 (1968).Google Scholar
  25. 25.
    M. Moukassi, P. Steinmetz, B. Dupre, and C. Gleitzer, Metall. Trans., B 14, 125 (1983).Google Scholar
  26. 26.
    Y. K. Rao, Metall. Trans., B 10, 243 (1979).CrossRefGoogle Scholar
  27. 27.
    J. O. Edström, J. ISI 175, 289 (1953).Google Scholar
  28. 28.
    A. Reizer and A. Baranski, Appl. Catal. 9, 343 (1984).CrossRefGoogle Scholar
  29. 29.
    A. Pattek-Janczyk, A. Z. Hrynkiewicz, J. Kraczka, and D. Kulgawczuk, Appl. Catal. 6, 35 (1983).CrossRefGoogle Scholar
  30. 30.
    J. L. Lemaitre, in: Characterisation Of Heterogeneous Catalysts (F. Delanny, ed.), p. 52, M. Dekker, New York (1984).Google Scholar
  31. 31.
    K. W. Hall, W. H. Tarn, and R. B. Anderson, J. Am. Chem. Soc. 72, 5436 (1950).CrossRefGoogle Scholar
  32. 32.
    P. H. Emmett and T. W. DeWitt, J. Am. Chem. Soc. 65, 1253 (1943).CrossRefGoogle Scholar
  33. 33.
    A. Baranski, M. Lagan, A. Pattek, and A. Reizer, Archiwum Hutniktwa 25, 143 (1980).Google Scholar
  34. 34.
    H. C. Chen and R. B. Anderson, J. Catal. 28, 161 (1973).CrossRefGoogle Scholar
  35. 35.
    B. S. Clausen and H. Topsoe, unpublished results.Google Scholar
  36. 36.
    T. Rayment, R. Schlögl, J. M. Thomas, and G. Ertl, Nature 315, 311 (1985).CrossRefGoogle Scholar
  37. 38.
    A. Baranski, A. Bielanski, and A. Pattek, J. Catal 26, 286 (1972).CrossRefGoogle Scholar
  38. 39.
    A. Baranski, J. M. Lagan, A. Pattek, and A. Reizer, Appl. Catal. 3, 207 (1982).CrossRefGoogle Scholar
  39. 40.
    A. Baranski, A. Reizer, A. Katorba, and E. Pyrczak, Appl. Catal. 19, 417 (1985).CrossRefGoogle Scholar
  40. 41.
    B. B. Seth and H. U. Ross, Trans. AJME 233, 180 (1965).Google Scholar
  41. 42.
    H. Schenk and H. P. Schulz, Arch. Eisenhüttenwesen 31, 691 (1960).Google Scholar
  42. 43.
    V. Solbakken, A. Solbakken and P. H. Emmett, J. Catal. 15, 90 (1969).CrossRefGoogle Scholar
  43. 44.
    A. T. Larson and C. N. Richardson, Ind. Eng. Chem. 17, 971 (1925).CrossRefGoogle Scholar
  44. 45.
    D. C. Silverman and M. Boudait, J. Catal. 77, 208 (1982).CrossRefGoogle Scholar
  45. 46.
    G. Fagherazzi, F. Galante, F. Garbassi, and N. Pernicone, J. Catal. 26, 344 (1972).CrossRefGoogle Scholar
  46. 47.
    H. Topsoe, J. A. Dumesic, and M. Boudart, J. Catal. 28, 477 (1973).CrossRefGoogle Scholar
  47. 48.
    W. Niemann, B. S. Clausen, and H. Topsoe, Ber. Bunsenges. Phys. Chem. 91, 1292 (1987).Google Scholar
  48. 49.
    M. Muhler, T. Rayment, A. Dent, and R. C. Schoonmaker, J. Catal. 126, 339 (1990).CrossRefGoogle Scholar
  49. 50.
    H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures, 2nd edn., p. 642 ff, Wiley, New York (1974).Google Scholar
  50. 51.
    N. D. Spencer, R. C. Schoonmaker, and G. A. Somorjai, J. Catal. 74, 129 (1982).CrossRefGoogle Scholar
  51. 52.
    R. Brill, E. L. Richter, and E. Ruch, Angew. Chem., Int. Ed. Engl. 6, 882 (1967).CrossRefGoogle Scholar
  52. 53.
    D. R. Strongin and G. A. Somorjai, J. Catal. 109, 51 (1988).CrossRefGoogle Scholar
  53. 54.
    G. Ertl, J. Vac. Sci. Technol. A1, 1274 (1983).Google Scholar
  54. 55.
    M. Grunze, M. Golze, W. Hirschwald, H. J. Freund, H. Pulm, U. Seip, M. C. Tsai, G. Ertl, and J. Küppers, Phys. Rev. Lett. 53, 850 (1984).CrossRefGoogle Scholar
  55. 56.
    G. Ertl, S. B. Lee, and M. Weiss, Surf. Sci. 114, 515 (1982).CrossRefGoogle Scholar
  56. 57.
    G. Ertl, S. B. Lee, and M. Weiss, Surf. Sci. 114, 527 (1982).CrossRefGoogle Scholar
  57. 58.
    H. J. Freund, B. Bartos, R. P. Messmer, M. Grunze, H. Kuhlenbeck, and M. Neumann, Surf. Sci. 185, 187 (1987).CrossRefGoogle Scholar
  58. 59.
    D. Arvanitis, L. Wenzel, K. Baberschke, M. Muhler, R. Schlögl, and G. Ertl, Phys. Rev. B 40, 6409 (1989).CrossRefGoogle Scholar
  59. 60.
    D. R. Strongin and G. A. Somorjai, Catal. Lett. 1, 61 (1988).CrossRefGoogle Scholar
  60. 61.
    P. Stoltze, Phys. Scr. 36, 824 (1987).CrossRefGoogle Scholar
  61. 62.
    P. Stoltze and J. Norskov, Phys. Rev. Lett. 55, 2502 (1985).CrossRefGoogle Scholar
  62. 63.
    M. Bowker, I. Parker, and K. Waugh, Appl. Catal. 14, 101 (1985).CrossRefGoogle Scholar
  63. 64.
    F. Bozso, G. Ertl, M. Grunze, and M. Weiss, J. Catal. 49, 18 (1977).CrossRefGoogle Scholar
  64. 65.
    S. D. Kelemen, H. J. Freund, and C. P. Mims. J. Catal. 97, 228 (1986).CrossRefGoogle Scholar
  65. 66.
    J. J. Yeh and J. Lindau, At. Data Nucl. Data Tables 32, 1 (1985).CrossRefGoogle Scholar
  66. 67.
    K. Wandelt, Surf. Sei. Rep. 2, 1 (1982).CrossRefGoogle Scholar
  67. 68.
    C. R. Brundle, T. J. Chuang, and K. Wandelt, Surf Sei. 68, 459 (1977).CrossRefGoogle Scholar
  68. 69.
    H. P. Bonzel, G. Broden, and H. J. Krebs, Appl. Surf. Sci. 16, 373 (1983).CrossRefGoogle Scholar
  69. 70.
    M. Muhler and R. Schlögl, unpublished results.Google Scholar
  70. 71.
    R. Schlögl, P. Oelhafen, H. J. Güntherodt, E. Fergusson, and W. Jones, Proc. Int. Carbon Conf Carbon 86, Deutsche Keramische Gesellschaft, (1989) p. 139.Google Scholar
  71. 72.
    F. Delanny, W. T. Tysoe, H. Heinemann, and G. A. Somorjai, Carbon 22, 401 (1984).CrossRefGoogle Scholar
  72. 73.
    A. J. Moulijn, B. M. Cerfotain, and F. Kaptaijn, Fuel 63, 1643 (1984).CrossRefGoogle Scholar
  73. 74.
    L. J. Whitman, C. E. Bartosch, W. Ho, G. Strasser, and M. Grunze, Phys. Rev. Lett. 56, 1984 (1986).CrossRefGoogle Scholar
  74. 75.
    Z. Paal, G. Ertl, and S. B. Lee, Appl. Surf. Sci. 8, 231 (1981).CrossRefGoogle Scholar
  75. 76.
    J. G. Van Ommen, W. J. Bolink, J. Prasad, and P. Mars, J. Catal. 38, 120 (1975).CrossRefGoogle Scholar
  76. 77.
    G. Pirug, G. Broden, and H. P. Bonzel, Surf. Sci. 94, 323 (1980).CrossRefGoogle Scholar
  77. 78.
    R. Schlögl, R. C. Schoonmaker, M. Muhler, and G. Ertl, Catal. Lett. 1, 237 (1988).CrossRefGoogle Scholar
  78. 79.
    R. Schlögl, R. Wiesendanger, and A. Baiker, J. Catal. 108, 237 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Robert Schlögl
    • 1
  1. 1.Fritz-Haber-InstitutMax-Planck-GesellschaftBerlin 33Federal Republic of Germany

Personalised recommendations