The History of the Development of Ammonia Synthesis

  • Kenzi Tamaru
Part of the Fundamental and Applied Catalysis book series (FACA)


The synthesis of ammonia from its elements ranks as one of the most important discoveries in the history of the science of catalysis, not only because of its industrial application in which synthetic fertilizers have contributed enormously to the survival of mankind, but also from the viewpoint of fundamental science. Even today, some eighty years after the first demonstration of ammonia synthesis, many original scientific papers on the mechanism of the catalytic synthesis of ammonia are still published. Every time a new method, technique, or concept has appeared in the field of heterogeneous catalysis, it has been applied to this reaction. Specific examples of these applications over the years include the concepts of gas equilibrium,(1) activated adsorption,(2) structure sensitivity,(3) stoichiometric number and kinetic studies,(4) nonuniform surfaces,(5) the measurements of surface area,(6) surface composition and promoter distributions,(7) and the use of isotopic and spectroscopic techniques.(8) In particular, various surface science techniques have been applied successfully to this reaction system over well-defined single crystal surfaces in recent years. In this way the effect of promoters on the iron catalyst has been elucidated.(9) Accordingly, the history of ammonia synthesis parallels not only that of industrial catalysis, but also the development of the science of catalysis.


Nitric Oxide Atmospheric Nitrogen Good Catalyst Iron Catalyst Ammonia Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.a.
    G. N. Lewis and M. Randall, Thermodynamics and the Free Energy of Chemical Substances, p. 556, McGraw-Hill, New York (1923).Google Scholar
  2. b.
    F. Haber, Z Elektrochem. 20, 597 (1914).Google Scholar
  3. c.
    F. Haber, S. Tamaru, and S. Ponnaz, Z Elektrochem. 21, 89 (1915).Google Scholar
  4. d.
    F. Haber and S. Tamaru, Z Elektrochem. 21, 191, 228 (1915).Google Scholar
  5. e.
    F. Haber, S. Tamaru, and L. N. Oeholm, Z Elektrochem. 21, 206 (1915).Google Scholar
  6. 2.a.
    H. S. Taylor, J. Am. Chem. Soc. 52, 5298 (1930); 53, 578 (1931).CrossRefGoogle Scholar
  7. b.
    J. E. Lennard-Jones, Proc. Roy. Soc. A106, 463 (1924).Google Scholar
  8. c.
    P. H. Emmett and S. Brunauer, J. Am. Chem. Soc. 56, 35 (1934).CrossRefGoogle Scholar
  9. d.
    P. H. Emmett, in: The Physical Basis for Heterogeneous Catalysis (E. Drauglis and R. I. Jaffe, eds.), p. 3, Plenum Press, New York (1973).Google Scholar
  10. e.
    G. Ertl, Catal. Rev. 21, 201 (1980).CrossRefGoogle Scholar
  11. 3.a.
    M. Boudart, Adv. Cata. 20, 153 (1969).CrossRefGoogle Scholar
  12. b.
    J. A. Dumesic, H. Topsoe, S. Khammouma, and M. Boudart, J. Catal. 37, 503 (1975).CrossRefGoogle Scholar
  13. 4.a.
    J. Horiuti, Proc. Jap. Acad. 29, 100 (1953); J. Res. Inst. Catal., Hokkaido Univ. 5, 1 (1957).Google Scholar
  14. b.
    K. Takana, J. Res. Inst. Catal., Hokkaido Univ. 19, 42 (1971).Google Scholar
  15. 5.
    S. Brunauer, K. S. Love, and R. G. Keenan, J. Am. Chem. Soc. 64, 751 (1942).CrossRefGoogle Scholar
  16. 6.
    P. H. Emmett and S. Brunauer, J. Am. Chem. Soc. 59, 1553 (1937).CrossRefGoogle Scholar
  17. 7.a.
    S. Brunauer and P. H. Emmett, J. Am. Chem. Soc. 59, 310 (1937); 62, 1732 (1940).CrossRefGoogle Scholar
  18. b.
    G. Ertl and N. Thiele, Appl. Surf. Sci. 3, 99 (1979). C. K. Hanji, H. Shimizu, H. Shindo, T. Onishi, D. C. Silverman, and M. Boudart, J. Catal. 77, 208 (1982).CrossRefGoogle Scholar
  19. d.
    G. Ertl, D. Prigge, R. Schloegl, and M. Weiss, J. Catal. 79, 359 (1983).CrossRefGoogle Scholar
  20. 8.a.
    J. C. Jungers and H. S. Taylor, J. Am. Chem. Soc. 57, 679 (1935).CrossRefGoogle Scholar
  21. b.
    R. M. Barrer, Trans. Faraday Soc. 32, 490 (1936).CrossRefGoogle Scholar
  22. c.
    G. S. Joris and H. S. Taylor, J. Am. Chem. Phys. 7, 893 (1939).CrossRefGoogle Scholar
  23. d.
    J. T. Kummer and P. H. Emmett, J. Chem. Phys. 19, 289 (1951).CrossRefGoogle Scholar
  24. e.
    R. P. Eischens and J. Jacknow, Proc. 3rd Int. Cong. Catal. (W. M. H. Sachtler et al., eds.), p. 627, Elsevier, Amsterdam (1965).Google Scholar
  25. f.
    K. Kunimori, T. Kawai, T. Kondow, T. Onishi, and K. Tamaru, Surf Sci. 54, 525 (1976).CrossRefGoogle Scholar
  26. g.
    G. Ertl, Catal. Rev. 21, 201, 1980; Surf Sci. 114, 515 (1982).Google Scholar
  27. h.
    K. Kishi and M. W. Roberts, Surf. Sci. 62, 252 (1977).CrossRefGoogle Scholar
  28. 9.a.
    G. Ertl, S. B. Lee, and M. Weiss, Surf Sci. 114, 515, 527 (1982).CrossRefGoogle Scholar
  29. b.
    W. L. Guthrie, J. D. Sokel, and G. A. Somorjai, Surf. Sci. 109, 390 (1982).CrossRefGoogle Scholar
  30. 10.
    J. von Leibig, Die organische Chemie in ihre Anwendung auf agrikcultural Chmie und Physiologi (1940).Google Scholar
  31. 11.
    W. Crookes, Report of the 68th Meeting of the British Association for the Advancement of Science, Bristol, 1898, p. 3, John Murray, London (1895).Google Scholar
  32. 12.a.
    W. Ostwald, Grundlinien der anorganischen Chemie, p. 345, (1900).Google Scholar
  33. b.
    Lebenslinien (Eine Selbstbiographie), Klasing Co., (1927).Google Scholar
  34. 13.a.
    J. E. Coates, The Haber Memorial Lecture, J. Chem. Soc., 1939, 1642.Google Scholar
  35. b.
    M. Goran, The Story of Fritz Haber, University of Oklahoma Press (1967).Google Scholar
  36. 14.
    S. A. Topham, The History of the Catalytic Synthesis of Ammonia, in: Catalysis, Science and Technology (J. R. Anderson and M. Boudart, eds.), Vol. 7, p. 1, (1985).Google Scholar
  37. 15.
    S. Tamaru, Kagaku-chishiki (Science) 14, 305 (1934).Google Scholar
  38. 16.
    K. Holdermann, Im Banne der Chimie, Carl Bosch, Leben und Werk, Econ-Verlag, Dusseldorg (1953).Google Scholar
  39. 17.
    F. Haber and G. van Oordt, Z Anorg. Chem. 44, 341 (1905).CrossRefGoogle Scholar
  40. 18.
    J. Dobereiner, J. Chem. Phys. 38, 3215 (1823).Google Scholar
  41. 19.
    F. Kuhlmann, Justus Liebigs Ann. Chem. 29, 272 (1839).Google Scholar
  42. 20.
    W. Ramsay and C. Young, J. Chem. Soc. London 45, 88 (1884).Google Scholar
  43. 21.
    E. P. Perman, Proc. Roy. Soc. 76A, 167 (1905).Google Scholar
  44. 22.
    F. Haber and G. van Oordt, Z Anorg. Chem. 44, 341 (1905).CrossRefGoogle Scholar
  45. 23.a.
    W. Nernst and F. Jost, Z Elektrochem. 13, 521 (1907).CrossRefGoogle Scholar
  46. b.
    F. Jost, Z Anorg. Chem. 57, 414 (1908).CrossRefGoogle Scholar
  47. 24.
    F. Haber and R. Le Rossignol, Ber. Bunsenges. Phys. Chem. 40, 2144 (1907).Google Scholar
  48. 25.
    G. Haber and R. Le Rossignol, Z. Elektrochem. 14, 181, 513 (1908).CrossRefGoogle Scholar
  49. 26.
    F. Haber, Funf Vortrage, Julius Springer, Berlin (1924); Aus Leben und Beruf, Julius Springer, Berlin (1927).Google Scholar
  50. 27.
    F. Haber, Z Elektrochem. 16, 244 (1910).CrossRefGoogle Scholar
  51. 28.
    A. Mittasch, Geschichte der Ammoniaksynthese, (1951); Early studies of multicomponent catalysts, Adv. Catal. 2, 81 (1950).Google Scholar
  52. 29.
    Lutz F. Haber, The Chemical Industry 1900–1930, International Growth and Technological Change, Oxford University Press (1971).Google Scholar
  53. 30.
    H. Heinemann, A Brief History of Industrial Catalysis, Catalysis, Science and Technology (J. R. Anderson and M. Boudart, eds.), Vol. 1, p. 1, (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Kenzi Tamaru
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceScience University of TokyoShinjuku-ku, Tokyo 162Japan

Personalised recommendations