Ferromagnetic Resonance

  • L. Bonneviot
  • D. Olivier
Part of the Fundamental and Applied Catalysis book series (FACA)

Abstract

Ferromagnetic resonance (FMR) is a magnetic resonance comparable to nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR); in these techniques the effect of a microwave irradiation is to flip the magnetic moments oriented in a magnetic field. Unlike EPR or NMR resonances, which operate on nuclear or electron spin, FMR concerns magnetic domains of a ferromagnetic material, i.e., the so-called Weiss domains. The first observation of FMR was reported by Griffiths in 1946(1) for electrolytically deposited films of iron, cobalt, and nickel. The first application to catalysis was made by Hollis and Selwood in 1961 on nickel-supported catalysts.(2) This technique can be used not only for ferromagnetic materials (metals and their alloys)(3,4) but also for ferrimagnetic materials (oxides such as garnets) (5) Usually, the magnetic moment, whose intensity depends on the Weiss domain volume as we shall see later on, is about three orders of magnitude greater than the magnetic moment of an electron. As a consequence, a quantum mechanical description of FMR phenomena is not necessary as it is for EPR or NMR spectroscopies. Furthermore, the temperature-dependent magnetization of ferromagnetic materials is at least three orders of magnitude more intense than in the case of paramagnetic materials. Therefore, though the FMR linewidths are usually very broad, this is the most sensitive spectroscopy for characterization (about one hundred times more sensitive than EPR).

Keywords

Ferromagnetic Material Magnetocrystalline Anisotropy Ferromagnetic Resonance Anisotropy Field Nickel Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. E. Griffiths, Nature 158, 670 (1946).CrossRefGoogle Scholar
  2. 2.
    D. Hollis and P. W. Selwood, J. Chem. Phys. 35, 378 (1961).CrossRefGoogle Scholar
  3. 3.
    B. Herpin, Théorie du Magnétisme, PUF, Paris (1968).Google Scholar
  4. 4.
    C. H. Morrish, The Physical Principle of Magnetism, John Wiley and Sons, New York (1965).Google Scholar
  5. 5.
    D. E. Patton, in: Magnetic Oxides ( D. J. Craik, ed.) John Wiley and Sons, New York (1975), p. 575.Google Scholar
  6. 6.
    E. Lax and K. J. Button, Microwave Ferrites and Ferrimagnetics, McGraw-Hill, New York (1962), p. 145.Google Scholar
  7. 7.
    F. P. Wohlfarth, Ferromagnetic Materials, North-Holland, Amsterdam (1980).Google Scholar
  8. 8.
    A. A. Slinkin, Russ. Chem. Rev. 37, 642 (1968).CrossRefGoogle Scholar
  9. 9.
    P. Weiss, J Phys., Ser. 4, 6, 661 (1907).Google Scholar
  10. 10.
    P. W. Selwood, Chemisorption and Magnetization, Academic, New York (1975).Google Scholar
  11. 11.
    L. D. Landau and E. M. Lifschitz, Phys. Z; Soviet. 8, 153 (1935).Google Scholar
  12. 12.
    T. L. Gilbert, Phys. Rev. 100, 1243 (1955).Google Scholar
  13. 13.
    F. Bloch, Phys. Rev. 70, 460 (1946).CrossRefGoogle Scholar
  14. 14.
    N. Bloembergen, Phys. Rev. 78, 572 (1950).CrossRefGoogle Scholar
  15. 15.
    L. Bonneviot, F. X. Cai, M. Che, M. Kermarec, O. Legendre, C. Lepetit, and D. Olivier, J. Phys. Chem. 91, 5912 (1987).CrossRefGoogle Scholar
  16. 16.
    L. Néel, Ann. Geophys. 5, 99 (1949).Google Scholar
  17. 17.
    C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 120-S (1959).CrossRefGoogle Scholar
  18. 18.
    L. Bonneviot, Thesis, Université P. et M. Curie, Paris (1983).Google Scholar
  19. 19.
    A. Aharoni, Phys. Rev. B 7, 1103 (1973).CrossRefGoogle Scholar
  20. 20.
    A. Aharoni, Phys. Rev. 117, 793 (1969).CrossRefGoogle Scholar
  21. 21.
    L. Bonneviot, M. Che, D. Olivier, G. A. Martin, and E. Freund, J. Phys. Chem. 90, 2112 (1986).CrossRefGoogle Scholar
  22. 22.
    A. J. Simoens, Thesis, Faculté Universitaire Notre-Dame de la Paix, Namur, Belgium, (1980).Google Scholar
  23. 23.
    D. Fargues, F. Vergand, E. Belin, C. Bonnelle, D. Olivier, L. Bonneviot, and M. Che, Surf. Sci. 106, 239 (1981).CrossRefGoogle Scholar
  24. 24.
    P. A. Jacobs, H. Nijs, J. Verdonck, E. G. Derouane, J. P. Gilson, and A. J. Simoens, J. Chem. Soc. Faraday Trans. 175, 1196 (1979).Google Scholar
  25. 25.
    E. G. Derouane, A. J. Simoens, C. Colin, G. A. Martin, J. A. Dalmon, and J. C. Védrine, J. Catal. 52, 50 (1978).CrossRefGoogle Scholar
  26. 26.
    E. Schlömann, J. Phys. Chem. Solids 6, 257 (1958).CrossRefGoogle Scholar
  27. 27.
    S. Bagdonat and M. J. Patni, J. Mag. Res. 15, 359 (1974)Google Scholar
  28. C. M. Srivastava and M. J. Patni, J. Phys. 38, Cl, 267 (1977).Google Scholar
  29. 28.
    J. A. Osborn, Phys. Rev. 67, 351 (1945).CrossRefGoogle Scholar
  30. 29.
    C. P. Poole, Electron Spin Resonance, John Wiley and Sons, New York (1967), p. 525.Google Scholar
  31. 30.
    M. Che, J. C. Védrine and C. Naccache, J. Chim. Phys. 66, 579 (1969).Google Scholar
  32. 31.
    J. D. Livingston and C. P. Bean, J. Appl. Phys. 30, 318-S (1959).CrossRefGoogle Scholar
  33. 32.
    R. S. De Biasi and T. C. Devezas, Phys. Lett. 50 A, 137 (1974)Google Scholar
  34. R. S. De Biasi and T. C. Devezas, Phys. Lett. B 87, 1425 (1977).Google Scholar
  35. 33.
    L. Néel, J. Phys. Radium 15, 225 (1954).CrossRefGoogle Scholar
  36. 34.
    W. Göpel and B. Wiechmann, J. Vac. Sci. Technol. 20, 219 (1982).CrossRefGoogle Scholar
  37. 35.
    M. M. P. Janssen, J. Appl. Phys. 41, 384 (1970).CrossRefGoogle Scholar
  38. 36.
    K. L. Chopra, Thin Film Phenomena, McGraw-Hill, New York (1969), p. 266.Google Scholar
  39. 37.
    J. F. Freedman, J. Appl. Phys. 33, 1148 (1962).CrossRefGoogle Scholar
  40. 38.
    S. Chikazumi, J. Appl. Phys. 32, 81-S (1961).CrossRefGoogle Scholar
  41. 39.
    S. Kuriki, J. Appl. Phys. 48, 2992 (1977).CrossRefGoogle Scholar
  42. 40.
    M. Che, M. Richard, and D. Olivier, J. Chem. Soc. Faraday Trans. 176, 1526 (1980).Google Scholar
  43. 41.
    V. K. Sharma and A. Baiker, J. Chem. Phys. 75, 5596 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • L. Bonneviot
    • 1
  • D. Olivier
    • 2
  1. 1.Département de ChimieUniversité LavalCanada
  2. 2.Institut de Recherches sur la CatalyseCNRS VilleurbanneFrance

Personalised recommendations