Catalyst Characterization pp 181-214 | Cite as
Ferromagnetic Resonance
Abstract
Ferromagnetic resonance (FMR) is a magnetic resonance comparable to nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR); in these techniques the effect of a microwave irradiation is to flip the magnetic moments oriented in a magnetic field. Unlike EPR or NMR resonances, which operate on nuclear or electron spin, FMR concerns magnetic domains of a ferromagnetic material, i.e., the so-called Weiss domains. The first observation of FMR was reported by Griffiths in 1946(1) for electrolytically deposited films of iron, cobalt, and nickel. The first application to catalysis was made by Hollis and Selwood in 1961 on nickel-supported catalysts.(2) This technique can be used not only for ferromagnetic materials (metals and their alloys)(3,4) but also for ferrimagnetic materials (oxides such as garnets) (5) Usually, the magnetic moment, whose intensity depends on the Weiss domain volume as we shall see later on, is about three orders of magnitude greater than the magnetic moment of an electron. As a consequence, a quantum mechanical description of FMR phenomena is not necessary as it is for EPR or NMR spectroscopies. Furthermore, the temperature-dependent magnetization of ferromagnetic materials is at least three orders of magnitude more intense than in the case of paramagnetic materials. Therefore, though the FMR linewidths are usually very broad, this is the most sensitive spectroscopy for characterization (about one hundred times more sensitive than EPR).
Keywords
Ferromagnetic Material Magnetocrystalline Anisotropy Ferromagnetic Resonance Anisotropy Field Nickel ParticlePreview
Unable to display preview. Download preview PDF.
References
- 1.A. H. E. Griffiths, Nature 158, 670 (1946).CrossRefGoogle Scholar
- 2.D. Hollis and P. W. Selwood, J. Chem. Phys. 35, 378 (1961).CrossRefGoogle Scholar
- 3.B. Herpin, Théorie du Magnétisme, PUF, Paris (1968).Google Scholar
- 4.C. H. Morrish, The Physical Principle of Magnetism, John Wiley and Sons, New York (1965).Google Scholar
- 5.D. E. Patton, in: Magnetic Oxides ( D. J. Craik, ed.) John Wiley and Sons, New York (1975), p. 575.Google Scholar
- 6.E. Lax and K. J. Button, Microwave Ferrites and Ferrimagnetics, McGraw-Hill, New York (1962), p. 145.Google Scholar
- 7.F. P. Wohlfarth, Ferromagnetic Materials, North-Holland, Amsterdam (1980).Google Scholar
- 8.A. A. Slinkin, Russ. Chem. Rev. 37, 642 (1968).CrossRefGoogle Scholar
- 9.P. Weiss, J Phys., Ser. 4, 6, 661 (1907).Google Scholar
- 10.P. W. Selwood, Chemisorption and Magnetization, Academic, New York (1975).Google Scholar
- 11.L. D. Landau and E. M. Lifschitz, Phys. Z; Soviet. 8, 153 (1935).Google Scholar
- 12.T. L. Gilbert, Phys. Rev. 100, 1243 (1955).Google Scholar
- 13.F. Bloch, Phys. Rev. 70, 460 (1946).CrossRefGoogle Scholar
- 14.N. Bloembergen, Phys. Rev. 78, 572 (1950).CrossRefGoogle Scholar
- 15.L. Bonneviot, F. X. Cai, M. Che, M. Kermarec, O. Legendre, C. Lepetit, and D. Olivier, J. Phys. Chem. 91, 5912 (1987).CrossRefGoogle Scholar
- 16.L. Néel, Ann. Geophys. 5, 99 (1949).Google Scholar
- 17.C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 120-S (1959).CrossRefGoogle Scholar
- 18.L. Bonneviot, Thesis, Université P. et M. Curie, Paris (1983).Google Scholar
- 19.A. Aharoni, Phys. Rev. B 7, 1103 (1973).CrossRefGoogle Scholar
- 20.A. Aharoni, Phys. Rev. 117, 793 (1969).CrossRefGoogle Scholar
- 21.L. Bonneviot, M. Che, D. Olivier, G. A. Martin, and E. Freund, J. Phys. Chem. 90, 2112 (1986).CrossRefGoogle Scholar
- 22.A. J. Simoens, Thesis, Faculté Universitaire Notre-Dame de la Paix, Namur, Belgium, (1980).Google Scholar
- 23.D. Fargues, F. Vergand, E. Belin, C. Bonnelle, D. Olivier, L. Bonneviot, and M. Che, Surf. Sci. 106, 239 (1981).CrossRefGoogle Scholar
- 24.P. A. Jacobs, H. Nijs, J. Verdonck, E. G. Derouane, J. P. Gilson, and A. J. Simoens, J. Chem. Soc. Faraday Trans. 175, 1196 (1979).Google Scholar
- 25.E. G. Derouane, A. J. Simoens, C. Colin, G. A. Martin, J. A. Dalmon, and J. C. Védrine, J. Catal. 52, 50 (1978).CrossRefGoogle Scholar
- 26.E. Schlömann, J. Phys. Chem. Solids 6, 257 (1958).CrossRefGoogle Scholar
- 27.S. Bagdonat and M. J. Patni, J. Mag. Res. 15, 359 (1974)Google Scholar
- C. M. Srivastava and M. J. Patni, J. Phys. 38, Cl, 267 (1977).Google Scholar
- 28.J. A. Osborn, Phys. Rev. 67, 351 (1945).CrossRefGoogle Scholar
- 29.C. P. Poole, Electron Spin Resonance, John Wiley and Sons, New York (1967), p. 525.Google Scholar
- 30.M. Che, J. C. Védrine and C. Naccache, J. Chim. Phys. 66, 579 (1969).Google Scholar
- 31.J. D. Livingston and C. P. Bean, J. Appl. Phys. 30, 318-S (1959).CrossRefGoogle Scholar
- 32.R. S. De Biasi and T. C. Devezas, Phys. Lett. 50 A, 137 (1974)Google Scholar
- R. S. De Biasi and T. C. Devezas, Phys. Lett. B 87, 1425 (1977).Google Scholar
- 33.L. Néel, J. Phys. Radium 15, 225 (1954).CrossRefGoogle Scholar
- 34.W. Göpel and B. Wiechmann, J. Vac. Sci. Technol. 20, 219 (1982).CrossRefGoogle Scholar
- 35.M. M. P. Janssen, J. Appl. Phys. 41, 384 (1970).CrossRefGoogle Scholar
- 36.K. L. Chopra, Thin Film Phenomena, McGraw-Hill, New York (1969), p. 266.Google Scholar
- 37.J. F. Freedman, J. Appl. Phys. 33, 1148 (1962).CrossRefGoogle Scholar
- 38.S. Chikazumi, J. Appl. Phys. 32, 81-S (1961).CrossRefGoogle Scholar
- 39.S. Kuriki, J. Appl. Phys. 48, 2992 (1977).CrossRefGoogle Scholar
- 40.M. Che, M. Richard, and D. Olivier, J. Chem. Soc. Faraday Trans. 176, 1526 (1980).Google Scholar
- 41.V. K. Sharma and A. Baiker, J. Chem. Phys. 75, 5596 (1981).CrossRefGoogle Scholar