Nuclear Magnetic Resonance in Heterogeneous Catalysis

  • Y. Ben Taarit
  • J. Fraissard
Part of the Fundamental and Applied Catalysis book series (FACA)

Abstract

Magnetic resonance includes both nuclear and electron magnetic resonances. The former applies to nuclei that have nonzero nuclear magnetic moments, the latter to unpaired electrons that all have the same electron magnetic moment. Laws that govern these techniques are quite similar; they differ only on the quantitative scale simply because the largest nuclear magnetic moment (that of the proton) is far smaller than that of the electron (the ratio is 1840). Table 5.1 gives the nuclear spin from which the nuclear magnetic moment derives, as a function of the parity of the mass and atomic number; the angular moment is expressed in ħ = h/2π units. The natural abundance, the relative sensitivity (compared to that of the proton), and the quadrupolar moment (where appropriate) of a limited selection of nuclei often encountered in catalysis are listed in Table 5.2.

Keywords

Nuclear Magnetic Resonance Chemical Shift Heterogeneous Catalysis Magic Angle Spinning Knight Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. H. Farrar and E. D. Becker, Pulse and Fourier Transform NMR: Introduction to Theory and Methods, Academic, New York (1977);Google Scholar
  2. L. M. Jackman and S. Sternhell, Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, Pergamon, New York (1969);Google Scholar
  3. A. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance, Harper and Row, New York (1967).Google Scholar
  4. 2.
    F. Bloch, Phys. Rev. 70, 460 (1946).CrossRefGoogle Scholar
  5. 3.
    V. M. Bermudez, J. Phys. Chem. 74, 4160 (1970).CrossRefGoogle Scholar
  6. 4.
    M. M. Mestdagh, W. E. E. Stone, and J. J. Fripiat, J. Phys. Chem. 76, 122 (1972).CrossRefGoogle Scholar
  7. 5.
    G. E. Pake, J. Chem. Phys. 16, 327 (1948);G. N. La Mar, W. D. Horrocks, and R. H. Holm, NMR of Paramagnetic Molecules, Academic, New York (1973).Google Scholar
  8. 6.
    J. L. Bonardet, A. Snobert, and J. Fraissard, C. R. Acad. Sci. 272, 1836 (1971).Google Scholar
  9. 7.
    J. L. Bonardet and J. Fraissard, J. Magn. Reson. 22, 1 (1976).Google Scholar
  10. 8.
    E. G. Derouane, J. Fraissard, J. J. Fripiat, and W. E. E. Stone, Catal. Rev. 7, 121 (1972).CrossRefGoogle Scholar
  11. 9.
    J. Fraissard, S. Bielikoff, and B. Imelik, Proc. of the wth Congr. on Catalysis Symposium, No.,3, Moscow (J. Hightower, ed.), The Catalysis Society, Houston, (1968), p. 1577.Google Scholar
  12. 10.
    E. R. Andrew, Progr. Nuclear Magn. Reson. Spectrosc. 8, 1 (1971).CrossRefGoogle Scholar
  13. 11.
    J. Schaeffer and O. Stejkal, J. Am. Chem. Soc. 98, 1031 (1976).CrossRefGoogle Scholar
  14. 12.
    E. Lippmaa, M. Alla, and T. Tuherm, Proc. of the 19th Colloque Ampère (H. Brunner, K. H. Hausser, and D. Schweitzer, eds. ), Heidelberg-Geneva (1976).Google Scholar
  15. 13.
    U. Haebelen, High Resolution NMR in Solids-Selective Averaging, Academic, New York (1976).Google Scholar
  16. 14.
    R. E. Wasylishen and C. A. Fyfe, Ann. Rep. NMR Spectrosc. 12, 1–80 and 287–290 (1982).Google Scholar
  17. 15.
    E. Lippmaa, M. Alla, T. J. Pehk, and G. Engelhardt, J. Am. Chem. Soc. 100, 1929 (1978).CrossRefGoogle Scholar
  18. 16.
    M. Magi, E. Lippmaa, A. Sampson, G. Engelhardt, and A. R. Grimmer, J. Phys. Chem. 88, 1518 (1984).CrossRefGoogle Scholar
  19. 17.
    E. Lippmaa, M. Magi, A. Sampson, G. Engelhardt, and A. R. Grimmer, J. Am. Chem. Soc. 102, 4889 (1980).CrossRefGoogle Scholar
  20. 18.
    S. Ramdas and J. Klinowbki, Nature 303, 521 (1984).CrossRefGoogle Scholar
  21. 19.
    J. Klinowbki, S. Ramdas, J. M. Thomas, C. A. Fyfe, and J. S. Hartman, J. Chem. Soc., Faraday Trans. II, 78, 1025 (1982).CrossRefGoogle Scholar
  22. 20.
    D. Freude and H. J. Behreus, Cryst. Res. Technol. 16, K36 (1981).Google Scholar
  23. 21.
    D. Muller, W. Gessner, H. J. Behreus, and G. Scheler, Chem. Phys. Lett. 79, 59 (1981).CrossRefGoogle Scholar
  24. 22.
    D. Muller, D. Hoebbel, and W. Gessner, Chem. Phys. Lett. 84, 25 (1981).CrossRefGoogle Scholar
  25. 23.
    A. P. M. Kentgens, K. F. M. Scholle, and W. S. Veeman, J. Phys. Chem. 87, 4357 (1983).CrossRefGoogle Scholar
  26. 24.
    R. Khouzami, G. Coudurier, F. Lefebvre, B. Mentzen, and J. C. Vedrine, Zeolites 10, 183 (1990).CrossRefGoogle Scholar
  27. 25.
    M. I. Davis, C. Montes, P. E. Hathaway, and J. M. B. Garces, Stud. Surf. Sci. Catal. 49A, 199 (1989).CrossRefGoogle Scholar
  28. 26.
    M. Kojima, F. Lefebvre, and Y. Ben Taarit, J. Chem. Soc. 86, 757 (1990).Google Scholar
  29. 27.
    Z. Gabelica, J. Bnagy, P. Bodart, and G. Debras, Chem. Lett., 10 59 (1984).Google Scholar
  30. 28.
    E. Dempsey, J. Catal. 39, 155 (1975).CrossRefGoogle Scholar
  31. 29.
    T. Ito and J. Fraissard, Chem. Phys. 76, 1 (1982).Google Scholar
  32. 30.
    L. C. Menorval and J. Fraissard, J. Chem. Soc. Faraday Trans. 178, 403 (1982).Google Scholar
  33. 31.
    J. Fraissard, T. Ito, L. C., Menorval, M. A. Springuel-Huet, in: Metal Microstructures in Zeolites ( P. A. Jacobs, ed.), Elsevier, Amsterdam (1982), p. 179.Google Scholar
  34. 32.
    M. R. Basila and T. R. Kantner, J. Phys. Chem. 70, 1681 (1966).CrossRefGoogle Scholar
  35. 33.
    P. Pichat, M. V. Mathieu, and B. Imelik, Bull. Soc. Chim. France 00, 2611 (1969).Google Scholar
  36. 34.
    I. D. Gay and S. Liang, J. Catal. 44, 306 (1976).CrossRefGoogle Scholar
  37. 35.
    W. H. Dawson, S. W. Kaiser, P. D. Ellis, and R. R. Inner, J. Amer. Chem. Soc. 103, 6780 (1981).CrossRefGoogle Scholar
  38. 36.
    J. A. Ripmeester, J. Amer. Chem. Soc. 105, 2925 (1983).CrossRefGoogle Scholar
  39. 37.
    G. E. Maciel, J. F. Haw, I. S. Chliang, B. L. Hawkins, T. A. Early, D. L. McKay, and L. Petrakis, J. Amer. Chem. Soc. 105, 5529 (1983).CrossRefGoogle Scholar
  40. 38.
    J. H. Lunsford, W. P. Rothwell, and W. Shen, J. Amer. Chem. Soc. 107, 1540 (1985).CrossRefGoogle Scholar
  41. 39.
    L. Baltusis, J. S. Frye, and G. E. Maciel, J. Amer. Chem. Soc. 109, 40 (1987).CrossRefGoogle Scholar
  42. 40.
    H. E. Rhodes, P. K. Wang, H. T. Stokes, C. P. Slichter, and J. H. Sinfelt, Phys. Rev. B26, 3559 (1982).CrossRefGoogle Scholar
  43. 41.
    C. P. Slichter, Surf Sci. 106, 382 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Y. Ben Taarit
    • 1
  • J. Fraissard
    • 2
  1. 1.Institut de Recherches sur la CatalyseCNRSVilleurbanneFrance
  2. 2.Laboratoire de Chimie des SurfacesUniversité Pierre et Marie CurieParisFrance

Personalised recommendations