Scanning Tunneling and Atomic Force Microscopies

  • P. Gallezot
Part of the Fundamental and Applied Catalysis book series (FACA)


The scanning tunneling microscope (STM) developed by Binnig and Rohrert(1–3) at the IBM Zürich research laboratory in the early 1980s was the first example of a new family of instruments based on a concept radically different from that of the optical and electron microscopes. The basic idea is to examine a surface at very close range (near field) with a scanning probe, the position of which can be perfectly controlled in three dimensions to within ± 0.1 nm. The signal generated on each point of the surface by the interaction between the probe and the surface atoms is translated electronically into an image of the surface. The resolution depends essentially on the probe size and on the accuracy of its positioning. There are potentially a wide variety of probes and signals which can be used to image a surface. We will focus our attention on the scanning tunneling microscope (STM) based on the tunneling current generated between the extremity of a metal tip and the surface atoms of a conducting material at a different potential. We will also examine the atomic force microscope (AFM) based on the repulsive force between the atoms of a diamond tip and surface atoms. The AFM, developed more recently,(4,5) has a potentially wider application range since it does not require conducting materials. Finally a few other scanning probe microscopes will be mentioned. They do not give atomic resolution but do not require a high surface flatness. So far applications in surface science have been carried out mainly with the STM.


Atomic Force Microscope Scan Tunneling Microscope Surface Relief Tunneling Current Atomic Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Binnig and H. Rohrer, Hely. Phys. Acta 55, 726 (1982).Google Scholar
  2. 2.
    G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).CrossRefGoogle Scholar
  3. 3.
    G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 50, 120 (1983).CrossRefGoogle Scholar
  4. 4.
    G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).CrossRefGoogle Scholar
  5. 5.
    G. Binnig, C. Gerber, E. Stoll, C. F. Albercht, and C. F. Quate, Europhys. Europhys. Lett. 3, 1281 (1987).CrossRefGoogle Scholar
  6. 6.
    J. Tersoff and D. R. Hamann, Phys. Rev. Lett. 50, 1998 (1983).CrossRefGoogle Scholar
  7. 7.
    J. Tersoff and D. R. Hamann, Phys. Rev. B31, 805 (1985).CrossRefGoogle Scholar
  8. 8.
    R. M. Feenstra, J. A. Stroscio, J. Tersoff, and A. D. Ferri, Phys. Rev. Lett. 58, 1668 (1987).CrossRefGoogle Scholar
  9. 9.
    D. K. Hansma, V. B. Blings, and C. E. Braker, Science 242, 209 (1988).CrossRefGoogle Scholar
  10. 10.
    Y. Martin, C. C. Williams, and H. K. Wickramasinghe, Scan. Microsc. 2, 3–8 (1988).Google Scholar
  11. 11.
    C. C. Williams and H. K. Wickramasinghe, Appl. Phys. Lett. 49, 1587 (1987).CrossRefGoogle Scholar
  12. 12.
    G. Binnig and H. Rohrer, Anger Chem. Int. 26, 606 (1987).CrossRefGoogle Scholar
  13. 13.
    P. K. Hansma and J. Tersoff, J. Appl. Phys. 91, R1 (1987).CrossRefGoogle Scholar
  14. 14.
    Proc. 1st Int. Conf. on STM, Surf. Sci 181 (1987).Google Scholar
  15. 15.
    Proc. 2nd Int. Conf. on STM, J. Vac. Sci. Technol. A6, 256 (1988).Google Scholar
  16. 16.
    Proc. 3nd Int. Conf. on STM, J. Microsc. 152 (1988).Google Scholar
  17. 17.
    L. P. Porte, D. Richard, and D. Gallezot, J. Micros. 125, 515 (1988).CrossRefGoogle Scholar
  18. 18.
    E. Ganz, K. Sattler, and J. Clarke, J. Vac., Sci. Technol. A6, 419 (1988).CrossRefGoogle Scholar
  19. 19.
    E. Ganz, K. Sattler, and J. Clarke, Phys. Rev. Lett. 60, 1856 (1988).CrossRefGoogle Scholar
  20. 20.
    A. Humbert, P. Pierrisnard, S. Sangay, C. Chapon, C. R. Henry, and C. Claeys, Europhys. Lett. 10, 533 (1989).CrossRefGoogle Scholar
  21. 21.
    C. Chapon, C. R. Henry, A. Humbert, M. Dayez, and S. Sangay, Congrès de la SFP Lyon, Septembre (1989).Google Scholar
  22. 22.
    K. L. Yeung and E. E. Wolf, Prof. 5th Int. STM Conference, Philadelphia, 1990.Google Scholar
  23. 23.
    L. Porte, M. Phaner, C. Noupa, B. Tardy, and J. C. Bertolini, Ultramicroscopy 42–44, 1355 (1992).Google Scholar
  24. 24.
    R. Wolkow and Ph. Avouris, Phys. Rev. Lett. 60, 1049 (1988).CrossRefGoogle Scholar
  25. 25.
    H. Ohtani, R. J. Wilson, S. Chiang, and R. M. Mate, Phys. Rev. Lett. 60, 2398 (1988).CrossRefGoogle Scholar
  26. 26.
    J. K. Gimzewski, E. Stoll, and R. R. Schlittler, Surf. Sci. 181, 267 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • P. Gallezot
    • 1
  1. 1.Institut de Recherches sur la CatalyseCNRSVilleurbanneFrance

Personalised recommendations