Characterization of Catalysts by Conventional and Analytical Electron Microscopy

  • P. Gallezot
  • C. Leclercq
Part of the Fundamental and Applied Catalysis book series (FACA)


Heterogeneous catalysts usually consist of highly divided solid phases that are closely interconnected and thus difficult to characterize. Conventional transmission electron microscopy (CTEM) offers the unique advantages of allowing the direct observation of catalyst morphology with a resolution tunable in the range 10−4–10−10 m and of obtaining structural information by lattice imaging and microdiffraction techniques. Moreover, scanning transmission electron microscopes (STEM) equipped with X-ray analyzers can be used to determine the local composition of catalysts with a spatial resolution as good as 1 nm in the case of field emission gun STEM. This is why electron microscopy is now in widespread use for catalyst characterization.


Analytical Electron Microscopy Scanning Transmission Electron Microscope Electron Energy Loss Spectroscopy Active Charcoal Extractive Replica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. B. Hirsh, A. Howie, R. B. Nicholson, D. W. Pashley, M. J. W. Whelan, Electron Microscopy of Thin Crystals, Krieger, Malabar, Florida (1977).Google Scholar
  2. 2.
    D. Kay, Techniques for Electron Microscopy, Blackwell, Oxford (1967).Google Scholar
  3. 3.
    J. M. Cowley, Diffraction Physics, North Holland, Amsterdam (1981).Google Scholar
  4. 4.
    S. Amelinckx, Diffraction and Imaging Techniques in Materials Sciences, Elsevier, Amsterdam (1978).Google Scholar
  5. 5.
    G. Thomas and M. J. Goring, Transmission Electron Microscopy of Materials, John Wiley, and Sons, New York (1979).Google Scholar
  6. 6.
    J. C. H. Spence, Experimental High Resolution Electron Microscopy, Clarendon, Oxford (1981).Google Scholar
  7. 7.
    B. Jouffrey, A. Bourret, and C. Colliex, Microscopie Elecronique en Science des Matériaux, Editions du CNRS, Paris (1983).Google Scholar
  8. 8.
    J. P. Eberhart, Méthodes physiques d’étude des minéraux et des matériaux solids, Doin, Paris (1976).Google Scholar
  9. 9.
    T. Baird, Catalysis 5, 172 (1981).CrossRefGoogle Scholar
  10. 10.
    A. Howie, in: Characterization of Catalysts ( J. M. Thomas and R. M. Lambert, eds.), John Wiley and Sons, New York (1980), p. 89.Google Scholar
  11. 11.
    J. V. Sanders, Catalysis Science and Technology, Vol. 7 (J. R. Anderson and M. Boudart, eds.), Springer-Verlag, Berlin (1985), p. 51.Google Scholar
  12. 12.
    P. Gallezot, M. Avalos-Borja, H. Poppa, and K. Heinemann, Langmuir 1, 342 (1985).CrossRefGoogle Scholar
  13. 13.
    A. V. Crewe, J. Wall, and J. Langmore, Science 168, 1338 (1970).CrossRefGoogle Scholar
  14. 14.
    J. P. Lynch, H. F. F. Dexpert, and E. Freund, Electron Microscopy and Analysis, Institute of Physics Conference Series Vol. 61 (M. J. Goringe, ed.), Institute of Physics, London (1981), p. 67.Google Scholar
  15. 15.
    J. J. Hren, J. I. Goldstein, and D. C. Joy, eds., Introduction to Analytical Electron Microscopy, Plenum, New York (1979).Google Scholar
  16. 16.
    F. Mavroce, L. Meuy, and R. Toxver (eds.), Microanalyse et Microscopie Electronique à Balayage, Les Editions de physique, Orsay (1979).Google Scholar
  17. 17.
    H. Dexpert, E. Freund, J. P. Lynch, S. J. Pennycook, Electron Microscopy and Analysis, Institute of Physics Conferences Series, Vol. 61 (M. J. Goringe, ed.), Institute of Physics, London (1981), p. 209.Google Scholar
  18. 18.
    R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, Plenum, New York (1986).Google Scholar
  19. 19.
    D. H. Kay, Techniques for Electron Microscopy, Blackwell, Oxford (1965).Google Scholar
  20. 20.
    A. Fukami and K. Adachi, J. Electr. Microsc. 14, 112 (1965).Google Scholar
  21. 21.
    G. Dalmai-Imelik, C. Leclercq, and I. Mutin, J. Microsc. 20, 123 (1974).Google Scholar
  22. 22.
    P. Gallezot, I. Mutin, and G. Dalamai-Imelik, J. Microsc. Spectrosc. Electron, 1, 1 (1976).Google Scholar
  23. 23.
    A. Auroux, H. Dexpert, C. Leclercq, and C. J. Vedrine, Appl. Catal. 6, 95 (1983).CrossRefGoogle Scholar
  24. 24.
    H. Charcosset, G. Dalamai, R. Frety, and C. Leclercq, C. R. Acad. Sc. 264, serie C, 151 (1967).Google Scholar
  25. 25.
    G. Labbe, R. Frety, H. Charcosset, and Y. Trambouze, J. Chem. Phys. 70, 1721 (1973).Google Scholar
  26. 26.
    R. Frety, Ann. Chem. 4, 453 (1969).Google Scholar
  27. F. Mauge, A. Auroux, J. C. Courcelle, Ph. Engelhard, P. Gallezot, and J. G. Grosmangin, Catalysis by Acids and Bases (B. Imelik et al.,eds.), Elsevier, Amsterdam (1985), p. 91.Google Scholar
  28. F. Mauge, J. C. Courcelle, Ph. Engelhard, P. Gallezot, J. Grosmangin, P. Primet, and B. Trusson, Zeolites: Synthesis, Structure Technology and Applications (B.Drzag et al.,eds.), Elsevier, Amsterdam (1985), p. 401.Google Scholar
  29. M. Breysee et al., Symposium on Advances in Hydrotreating,ACS Denver meeting, 5–10 April (1987).Google Scholar
  30. 30.
    M. J. Yacaman and T. Ocana, Phys. Stat. Sol. 42, 571 (1977).CrossRefGoogle Scholar
  31. 31.
    H. Batis, C. Leclercq, and P. Vergnon, J. Microsc. Spectrosc, Electron 7, 149 (1982).Google Scholar
  32. 32.
    C. Leclercq, H. Batis, and M. Boudeulle, J. Microsc. Spectrosc. Electron 8, 243 (1983).Google Scholar
  33. 33.
    M. Boudeulle, H. Baris, C. Leclercq, and P. Vergnon, J. Sol. Stat. Chem. 48, 21 (1983).CrossRefGoogle Scholar
  34. 34.
    P. Vergnon and H. Batis, Bull. Soc. Chem., 9–10, Part 1 (1984), p. 265.Google Scholar
  35. 35.
    G. Dalmai-Imelik, C. Leclercq, and A. Maubert-Muguet, J. Sol. State. Chem. 16, 129 (1976).CrossRefGoogle Scholar
  36. 36.
    F. Figueras, S. Fuentes, and C. Leclercq, Growth and Properties of Metal Clusters (J. Bourdon, ed.), Elsevier, Amsterdam (1980), p. 525.Google Scholar
  37. 37.
    P. Briot, G. Gallezot, C. Leclercq, and M. Primet, Microsc. Microanal. Microstruct. 1, 149 (1990).CrossRefGoogle Scholar
  38. 38.
    M. Gillet, Surf Sci. 67, 139 (1977).CrossRefGoogle Scholar
  39. 39.
    M. J. Yacaman, K. Heinemann, C. Y. Yang, and H. Poppa, J. Cryst. Growth 47, 187 (1979).CrossRefGoogle Scholar
  40. 40.
    C. Y. Yang, J. Cryst. Growth 47, 274 (1979).CrossRefGoogle Scholar
  41. 41.
    J. M. Dominguez and M. J. Yacaman, J. Catal. 64, 223 (1980).CrossRefGoogle Scholar
  42. 42.
    P. Gallezot, C. Leclercq, I. Mutin, C. Nicot, and D. Richard, J. Microsc. Spectrosc. Electron. 10, 479 (1985).Google Scholar
  43. 43.
    D. J. Smith and L. D. Marks, Phil. Mag. 44, 735 (1981).CrossRefGoogle Scholar
  44. 44.
    J. Turkevich, L. L., Ban, and J. H. Wall, Perspectives in Catalysis (R. Larsson ed.), CWK, Gleerup (1981), p. 59.Google Scholar
  45. 45.
    P. Gallezot, C. Leclercq, M. Guisnet, and P. Magnoux, J. Catal. 114, 100 (1988).CrossRefGoogle Scholar
  46. 46.
    P. Gallezot, C. Leclercq, J. Barbier, and P. Marecot, J. Catal. 116, 164 (1989).CrossRefGoogle Scholar
  47. 47.
    V. Pitchon, P. Gallezót, C. Nicot, and H. Praliaud, Appl. Catal. 47, 357 (1989).CrossRefGoogle Scholar
  48. 48.
    D. Goupil, Thèse de Doctorat no. 9086, Lyon (1986).Google Scholar
  49. 49.
    A. Choplin, L. Huang, A. Theolier, P. Gallezot, J. M. Basset, U. Siriwardane, S. G. Shore, and R. Mathieu, J. Am. Chem. Soc. 108, 4224 (1986).CrossRefGoogle Scholar
  50. 50.
    F. Mauge, J. C. Courcelle, Ph. Engelhard, P. Gallezot, and J. Grosmangin, New Developments in Zeolite Science and Technology (Y. Murakami, A. Iijima, and J. M. Ward, eds.), Elsevier, Amsterdam (1986), p. 803.Google Scholar
  51. 51.
    J. C. Volta, B. Benaichouba, I. Mutin, and J. C. Vedrine, Appl. Catal. 8, 215 (1983).CrossRefGoogle Scholar
  52. 52.
    W. Eltzner, M. Breysse, M. Lacroix, C. Leclercq, M. Vrinat, M. A. Muller, E. Diemann, Polyhedron 7, 2405 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • P. Gallezot
    • 1
  • C. Leclercq
    • 1
  1. 1.Institute de Recherches sur la CatalyseCNRSVilleurbanneFrance

Personalised recommendations