Skip to main content

Characterization of Catalysts by Conventional and Analytical Electron Microscopy

  • Chapter

Part of the book series: Fundamental and Applied Catalysis ((FACA))

Abstract

Heterogeneous catalysts usually consist of highly divided solid phases that are closely interconnected and thus difficult to characterize. Conventional transmission electron microscopy (CTEM) offers the unique advantages of allowing the direct observation of catalyst morphology with a resolution tunable in the range 10−4–10−10 m and of obtaining structural information by lattice imaging and microdiffraction techniques. Moreover, scanning transmission electron microscopes (STEM) equipped with X-ray analyzers can be used to determine the local composition of catalysts with a spatial resolution as good as 1 nm in the case of field emission gun STEM. This is why electron microscopy is now in widespread use for catalyst characterization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. B. Hirsh, A. Howie, R. B. Nicholson, D. W. Pashley, M. J. W. Whelan, Electron Microscopy of Thin Crystals, Krieger, Malabar, Florida (1977).

    Google Scholar 

  2. D. Kay, Techniques for Electron Microscopy, Blackwell, Oxford (1967).

    Google Scholar 

  3. J. M. Cowley, Diffraction Physics, North Holland, Amsterdam (1981).

    Google Scholar 

  4. S. Amelinckx, Diffraction and Imaging Techniques in Materials Sciences, Elsevier, Amsterdam (1978).

    Google Scholar 

  5. G. Thomas and M. J. Goring, Transmission Electron Microscopy of Materials, John Wiley, and Sons, New York (1979).

    Google Scholar 

  6. J. C. H. Spence, Experimental High Resolution Electron Microscopy, Clarendon, Oxford (1981).

    Google Scholar 

  7. B. Jouffrey, A. Bourret, and C. Colliex, Microscopie Elecronique en Science des Matériaux, Editions du CNRS, Paris (1983).

    Google Scholar 

  8. J. P. Eberhart, Méthodes physiques d’étude des minéraux et des matériaux solids, Doin, Paris (1976).

    Google Scholar 

  9. T. Baird, Catalysis 5, 172 (1981).

    Article  Google Scholar 

  10. A. Howie, in: Characterization of Catalysts ( J. M. Thomas and R. M. Lambert, eds.), John Wiley and Sons, New York (1980), p. 89.

    Google Scholar 

  11. J. V. Sanders, Catalysis Science and Technology, Vol. 7 (J. R. Anderson and M. Boudart, eds.), Springer-Verlag, Berlin (1985), p. 51.

    Google Scholar 

  12. P. Gallezot, M. Avalos-Borja, H. Poppa, and K. Heinemann, Langmuir 1, 342 (1985).

    Article  CAS  Google Scholar 

  13. A. V. Crewe, J. Wall, and J. Langmore, Science 168, 1338 (1970).

    Article  CAS  Google Scholar 

  14. J. P. Lynch, H. F. F. Dexpert, and E. Freund, Electron Microscopy and Analysis, Institute of Physics Conference Series Vol. 61 (M. J. Goringe, ed.), Institute of Physics, London (1981), p. 67.

    Google Scholar 

  15. J. J. Hren, J. I. Goldstein, and D. C. Joy, eds., Introduction to Analytical Electron Microscopy, Plenum, New York (1979).

    Google Scholar 

  16. F. Mavroce, L. Meuy, and R. Toxver (eds.), Microanalyse et Microscopie Electronique à Balayage, Les Editions de physique, Orsay (1979).

    Google Scholar 

  17. H. Dexpert, E. Freund, J. P. Lynch, S. J. Pennycook, Electron Microscopy and Analysis, Institute of Physics Conferences Series, Vol. 61 (M. J. Goringe, ed.), Institute of Physics, London (1981), p. 209.

    Google Scholar 

  18. R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, Plenum, New York (1986).

    Google Scholar 

  19. D. H. Kay, Techniques for Electron Microscopy, Blackwell, Oxford (1965).

    Google Scholar 

  20. A. Fukami and K. Adachi, J. Electr. Microsc. 14, 112 (1965).

    CAS  Google Scholar 

  21. G. Dalmai-Imelik, C. Leclercq, and I. Mutin, J. Microsc. 20, 123 (1974).

    Google Scholar 

  22. P. Gallezot, I. Mutin, and G. Dalamai-Imelik, J. Microsc. Spectrosc. Electron, 1, 1 (1976).

    CAS  Google Scholar 

  23. A. Auroux, H. Dexpert, C. Leclercq, and C. J. Vedrine, Appl. Catal. 6, 95 (1983).

    Article  CAS  Google Scholar 

  24. H. Charcosset, G. Dalamai, R. Frety, and C. Leclercq, C. R. Acad. Sc. 264, serie C, 151 (1967).

    Google Scholar 

  25. G. Labbe, R. Frety, H. Charcosset, and Y. Trambouze, J. Chem. Phys. 70, 1721 (1973).

    CAS  Google Scholar 

  26. R. Frety, Ann. Chem. 4, 453 (1969).

    CAS  Google Scholar 

  27. F. Mauge, A. Auroux, J. C. Courcelle, Ph. Engelhard, P. Gallezot, and J. G. Grosmangin, Catalysis by Acids and Bases (B. Imelik et al.,eds.), Elsevier, Amsterdam (1985), p. 91.

    Google Scholar 

  28. F. Mauge, J. C. Courcelle, Ph. Engelhard, P. Gallezot, J. Grosmangin, P. Primet, and B. Trusson, Zeolites: Synthesis, Structure Technology and Applications (B.Drzag et al.,eds.), Elsevier, Amsterdam (1985), p. 401.

    Google Scholar 

  29. M. Breysee et al., Symposium on Advances in Hydrotreating,ACS Denver meeting, 5–10 April (1987).

    Google Scholar 

  30. M. J. Yacaman and T. Ocana, Phys. Stat. Sol. 42, 571 (1977).

    Article  CAS  Google Scholar 

  31. H. Batis, C. Leclercq, and P. Vergnon, J. Microsc. Spectrosc, Electron 7, 149 (1982).

    Google Scholar 

  32. C. Leclercq, H. Batis, and M. Boudeulle, J. Microsc. Spectrosc. Electron 8, 243 (1983).

    CAS  Google Scholar 

  33. M. Boudeulle, H. Baris, C. Leclercq, and P. Vergnon, J. Sol. Stat. Chem. 48, 21 (1983).

    Article  CAS  Google Scholar 

  34. P. Vergnon and H. Batis, Bull. Soc. Chem., 9–10, Part 1 (1984), p. 265.

    Google Scholar 

  35. G. Dalmai-Imelik, C. Leclercq, and A. Maubert-Muguet, J. Sol. State. Chem. 16, 129 (1976).

    Article  CAS  Google Scholar 

  36. F. Figueras, S. Fuentes, and C. Leclercq, Growth and Properties of Metal Clusters (J. Bourdon, ed.), Elsevier, Amsterdam (1980), p. 525.

    Google Scholar 

  37. P. Briot, G. Gallezot, C. Leclercq, and M. Primet, Microsc. Microanal. Microstruct. 1, 149 (1990).

    Article  CAS  Google Scholar 

  38. M. Gillet, Surf Sci. 67, 139 (1977).

    Article  CAS  Google Scholar 

  39. M. J. Yacaman, K. Heinemann, C. Y. Yang, and H. Poppa, J. Cryst. Growth 47, 187 (1979).

    Article  CAS  Google Scholar 

  40. C. Y. Yang, J. Cryst. Growth 47, 274 (1979).

    Article  CAS  Google Scholar 

  41. J. M. Dominguez and M. J. Yacaman, J. Catal. 64, 223 (1980).

    Article  Google Scholar 

  42. P. Gallezot, C. Leclercq, I. Mutin, C. Nicot, and D. Richard, J. Microsc. Spectrosc. Electron. 10, 479 (1985).

    CAS  Google Scholar 

  43. D. J. Smith and L. D. Marks, Phil. Mag. 44, 735 (1981).

    Article  CAS  Google Scholar 

  44. J. Turkevich, L. L., Ban, and J. H. Wall, Perspectives in Catalysis (R. Larsson ed.), CWK, Gleerup (1981), p. 59.

    Google Scholar 

  45. P. Gallezot, C. Leclercq, M. Guisnet, and P. Magnoux, J. Catal. 114, 100 (1988).

    Article  CAS  Google Scholar 

  46. P. Gallezot, C. Leclercq, J. Barbier, and P. Marecot, J. Catal. 116, 164 (1989).

    Article  CAS  Google Scholar 

  47. V. Pitchon, P. Gallezót, C. Nicot, and H. Praliaud, Appl. Catal. 47, 357 (1989).

    Article  CAS  Google Scholar 

  48. D. Goupil, Thèse de Doctorat no. 9086, Lyon (1986).

    Google Scholar 

  49. A. Choplin, L. Huang, A. Theolier, P. Gallezot, J. M. Basset, U. Siriwardane, S. G. Shore, and R. Mathieu, J. Am. Chem. Soc. 108, 4224 (1986).

    Article  CAS  Google Scholar 

  50. F. Mauge, J. C. Courcelle, Ph. Engelhard, P. Gallezot, and J. Grosmangin, New Developments in Zeolite Science and Technology (Y. Murakami, A. Iijima, and J. M. Ward, eds.), Elsevier, Amsterdam (1986), p. 803.

    Google Scholar 

  51. J. C. Volta, B. Benaichouba, I. Mutin, and J. C. Vedrine, Appl. Catal. 8, 215 (1983).

    Article  CAS  Google Scholar 

  52. W. Eltzner, M. Breysse, M. Lacroix, C. Leclercq, M. Vrinat, M. A. Muller, E. Diemann, Polyhedron 7, 2405 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gallezot, P., Leclercq, C. (1994). Characterization of Catalysts by Conventional and Analytical Electron Microscopy. In: Imelik, B., Vedrine, J.C. (eds) Catalyst Characterization. Fundamental and Applied Catalysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9589-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9589-9_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9591-2

  • Online ISBN: 978-1-4757-9589-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics