Small-Angle X-Ray Scattering

  • A. J. Renouprez
Part of the Fundamental and Applied Catalysis book series (FACA)

Abstract

Small-angle X-ray scattering (SAXS) was discovered in 1938 by A. Guinier.(1) It is now a powerful method for characterizing catalysts (particle size, surface area) and disordered materials such as gels, sols, defective alloys, porous oxides or carbons, polymers. Like diffraction, SAXS is a coherent scattering phenomenon, but instead of being produced by the interference of waves scattered by atoms ordered inside a unit cell smaller than 20 Å, SAXS originates from the interference between larger blocks of uniform matter whose diameters are typically 20 to 1000 Å. Then, since direct and reciprocal space are related by Fourier transforms, the normal diffraction is observed at large angles (Sin 2θ/λ = 0.1 to 1.5 Å−1), SAXS is limited to a narrow cone near the origin (< 0.1 Å−1). It is easily understood, from the very nature of this diffraction phenomenon, that its interpretation will be straightforward for a two-phase system, with uniform density in each phase, but much more intricate for multicomponent catalysts. In this case complementary information (electron microscopy, gas adsorption) will be indispensable for interpretation of the scattering data.

Keywords

Multiple Scattering Diameter Distribution Scattered Intensity Detector Plane Multicomponent Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Guinier, Ann. Phys. 12, 161 (1939).Google Scholar
  2. 2.
    J. L. Soule, P. Phys. Rad. 18, 90 A (1958).Google Scholar
  3. 3.
    O. Glatter and O. Kratky, Small-Angle X-Ray Scattering, Academic, London (1982).Google Scholar
  4. 4.
    V. Luzzatti, Acta Cryst. 10, 643 (1957).CrossRefGoogle Scholar
  5. 5.
    W. Ruland and H. Tompa, J. Appl. Cryst. 5, 1 (1972).CrossRefGoogle Scholar
  6. 6.
    J. R. Donati, B. Pascal, and A. J. Renouprez, Bull. Soc. Fr. Miner. Cristallogr. 532 (1972).Google Scholar
  7. 7.
    A. Guinier and G. Fournet, in: Small-Angle Scattering of X-Rays, John Wiley and Sons, New York (1955).Google Scholar
  8. 8.
    G. Porod, in: Small-Angle X-Ray Scattering, Academic, London (1982), p. 29.Google Scholar
  9. 9.
    J. Mering and D. Tchoubar, J. Appl. Cryst. 1, 153 (1968).CrossRefGoogle Scholar
  10. 10.
    H. B. Stuhrmann, J. Appl. Cryst. 7, 173 (1974).CrossRefGoogle Scholar
  11. 11.
    O. Kratky, Z. Elektrochem. 62, 66 (1958).Google Scholar
  12. 12.
    U. Bonse and M. Hart, Appl. Phys. Lett. 6, 155 (1965).CrossRefGoogle Scholar
  13. 13.
    A. Renouprez, H. Bottazzi, D. Weigel, and B. Imelik, J. Chim. Phys. 62, 131 (1965).Google Scholar
  14. 14.
    G. Damaschun, Naturwiss. 51, 378 (1964).CrossRefGoogle Scholar
  15. 15.
    A. Renouprez and J. Avom, in: Characterization of Porous Solids, Elsevier, Amsterdam 39 (1988).Google Scholar
  16. 16.
    P. Gallezot, A. Alarcondiaz, J. A. Dalmon, and A. Renouprez, J. Catal. 39, 334 (1975).CrossRefGoogle Scholar
  17. 17.
    A. Renouprez, C. Van Hoang, and A. Compagnon, J. Catal. 31, 411 (1974).CrossRefGoogle Scholar
  18. 18.
    D. Espinat, B. Moraweck, J. F. Larue, and A. Renouprez, J. Appl. Cryst. 17, 269 (1984).CrossRefGoogle Scholar
  19. 19.
    A. Renouprez, H. Jobic, and R. C. Oberthur, Zeolites 5, 222 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • A. J. Renouprez
    • 1
  1. 1.Institut de Recherches sur la CatalyseCNRSVilleurbanneFrance

Personalised recommendations