Phantoms for Neutron Capture Therapy Dosimetry

  • O. K. Harling
  • R. D. Rogus
  • E. L. RedmondII
  • K. A. Roberts
  • D. J. Moulin
  • C. S. Yam

Abstract

A water-filled head phantom and a wax body part phantom that have been designed for experimental and Monte Carlo based dosimetry for boron neutron capture therapy are described. The head phantom is ellipsoidal, based on the Snyder head model. Body part phantoms are molded directly from the patient’s body. The composition of the head phantom is designed to simulate the neutron slowing down properties of the human skull and brain; and the body part phantom emulates the muscle. The relevant dose components may be mapped in three-dimensions, either experimentally using activation foils and paired ionization chambers, or theoretically using the Monte Carlo based radiation transport code MCN P. Dose-versus-depth profiles of the NCT relevant dose components, as measured experimentally and calculated by Monte Carlo are generally in good agreement.

Keywords

Boron Neutron Capture Therapy Epithermal Neutron Guide Tube Gold Foil Hydrogen Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. S. Snyder, M. R. Ford, G. G. Warner, and H. L. Fisher. Jr.. Estimates of absorbed fraction for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. MIRD, J. Noel. Med. Suppl., No. 3, Pamphlet 5, 41, 1969.Google Scholar
  2. 2.
    O. L. Deutsch and B. W. Murray, Monte Carlo dosimetry calculations for boron neutron capture therapy, Nucl. Technology 26: 320–339, 1975.Google Scholar
  3. 3.
    R. A. Brooks, G. DiChiro, and M. R. Keller, Explanation of cerebral white-gray contrast in computed tomography, J. Comp..9s.sist. Tomog. 4 (4): 489, 1980.CrossRefGoogle Scholar
  4. 4.
    M. A. Weissberger, R. G. Zamenhof, S. Aronow, and R. M. Neer, Computed tomography scanning for the measurement of bone mineral in the human spine,. J. Comp. Assist. Tomnp. 2: 253, 1978.CrossRefGoogle Scholar
  5. 5.
    K. A. Roberts, Mixed “Field Dosimetry in Realistic Head Phantoms Using an Epithermal beam at MITR-II,” M.S. Thesis, Department of Nuclear Engineering. Massachusetts Institute of Technology, Cambridge, Massachusetts, May, 1990.Google Scholar
  6. 6.
    C. S. Yam, “Design of Patient Positioning System, Body Phantom, and Patient Shielding for the Boron Neutron Capture Therapy Project at the MITR-11,° M.S. Thesis, Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, February, 1993, pp. 35–40.Google Scholar
  7. 7.
    O. K. Harling, K. A. Roberts, D. J. Moulin and R. D. Rogus, Head phantoms for neutron capture therapy, Medical Physics (submitted for publication September 23, 1994 ).Google Scholar
  8. 8.
    J. F. Briesmeister, ed, “MCNP-A General Monte Carlo N-Particle Transport Code” (Version 4A), Los Alamos National Laboratory, LA-12625, 1993.Google Scholar
  9. 9.
    E. L. Redmond II, J. C. Yanch, and O. K. Harling, Monte Carlo simulation of the Massachusetts Institute of Technology research reactor, Noel. Technology 106: 1–14, 1994.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • O. K. Harling
    • 1
  • R. D. Rogus
    • 1
  • E. L. RedmondII
    • 1
  • K. A. Roberts
    • 1
  • D. J. Moulin
    • 1
  • C. S. Yam
    • 1
  1. 1.Nuclear Reactor LaboratoryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations