Netropsin and Distamycin Analogues Bearing Ortho-Carborane

  • Yoshinori Yamamoto
  • Jianping Cai
  • Hiroyuki Nakamura
  • Naoki Sadayori
  • Hisao Nemoto

Abstract

The application of the cytotoxic 10B neutron-capture reaction [10B(n,α)7Li] to the treatment of human tumors has received much attention in recent years. The interaction of boron-10 isotope and thermal neutron produces an α-particle and recoils a lithium-7 ion bearing approximately 2,4 MeV (Eq. 1).

Keywords

Neutron Capture Boron Atom Boronic Acid Boron Neutron Capture Therapy Purine Nucleoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Hatanaka, “Boron Neutron Capture Therapy for Tumors,” Nishimura Co. Ltd., Niigata, Japan, 1986.Google Scholar
  2. 2.
    A.H. Soloway, R.F. Barth, and D.E. Carpenter, “Advances in Neutron Capture Therapy,” Plenum, New York, 1993.Google Scholar
  3. 3.
    Y. Mishima, C. Honda, M. Ichihashi, H. Ohara, J. Hiratsuka, N. Fukuda, H. Karashima, T. Kobayashi, K. Kanda, and K. Yoshino, Treatment of malignant melanoma by single neutron capture treatment with melanoma-seeking 1°B compound, Lancet 388, 1989.Google Scholar
  4. 4.
    For an excellent review, M.F. Hawthorne, The role of chemistry in the development of boron neutron capture therapy, Angew Chem. Int. Ed. Engl. 32: 950, 1993.CrossRefGoogle Scholar
  5. 5.
    (a) A.K.M. Anisuzzaman, F. Alam, and A.H. Soloway, Synthesis of a carboranyl nucleoside for potential use in neutron capture therapy of cancer, Polyhedron 9: 891, 1990.CrossRefGoogle Scholar
  6. (b) Y. Yamamoto, T. Seko, H. Nakamura, H. Nemoto, H. Hojo, N. Mukai, and Y. Hashimoto, Synthesis of carboranes containing nucleoside bases. Unexpectedly high cytostatic and cytocidal toxicity toward cancer cells, J. Chem. Soc. Chem. Commun. 157, 1992.Google Scholar
  7. (c) R.C. Reynolds, T.W. Trask, and W.D. Sedwick, 2,4- dichloro-5-(1-o-carborany]methyl)-6-methylpyrimidine: A potential synthon for 5-(l-o- Carboranylmethyl)pyrimidines, J. Org. Chem. 56: 2391, 1991.CrossRefGoogle Scholar
  8. 6.
    (a) T.K. Liao, E.C. Podrebarac, and C.C. Cheng, Boron-substituted pyrimidines, J. Am. Chem. Soc. 86: 1869, 1964.CrossRefGoogle Scholar
  9. (b) R.F. Schinazi, and W.H. Prusoff, Synthesis and properties of boron and silicon substituted uracil or 2’-Deoxyuridine, Tetrahedron Lett. 4981, 1978; Synthesis of 5-(Dihydroxybory1)-2’-deoxyuridine and related boron-containing pyrimidines, J. Org. Chem. 50: 841, 1985.CrossRefGoogle Scholar
  10. (c) Y. Yamamoto, T. Seko, and H. Nemoto, A new method for the synthesis of boron-10 containing nucleoside derivatives for neutron capture therapy via palladium catalyzed reaction, J. Org. Chem. 54: 4734, 1989.CrossRefGoogle Scholar
  11. (d) Y. Yamamoto, T. Seko, F. Rong, and H. Nemoto, Boron-10 carriers for NCT. A new synthetic method via condensation with aldehydes having boronic moiety, Tetrahedron Lett. 30: 7191, 1989.CrossRefGoogle Scholar
  12. (e) Y. Yamamoto, Molecular design and synthesis of B-10 carriers for neutron capture therapy, Pure Appl. Chem. 63: 423, 1991.CrossRefGoogle Scholar
  13. 7.
    (a) B.F. Spielvogel, A. Sood, B.R. Shaw, and I.H. Hall, From boron analogues of amino acids to boronated DNA: potential new pharmaceuticals and neutron capture agents, Pure Appl. Chem. 63: 415, 1991.CrossRefGoogle Scholar
  14. (b) A. Sood, B.R. Shaw, and B.F. Spielvogel, Boron-containing nucleic acids. 2. Synthesis of oligodeoxynucleoside boranophosphates, J. Am. Chem. Soc. 112: 9000, 1990.CrossRefGoogle Scholar
  15. (c) J. Tomasz, B.R. Shaw, K. Porter, B.F. Spielvogel, and A. Sood, 5’-P-Borane-substituted thymidine mono-phosphate and triphosphate, Angew. Chem. Int. Ed. Engl. 31: 1373, 1992.CrossRefGoogle Scholar
  16. 8.
    A. Sood, B.F. Spielvogel, and B.R. Shaw, Boron-containing nucleic acids: synthesis of cyanoborane adducts of 2’-deoxynucleosides, J. Am. Chem. Soc. 111: 9234, 1989.CrossRefGoogle Scholar
  17. 9.
    (a) W. Tjarks, and D. Gabel, Boron-containing thiouracil derivatives for neutron-capture therapy of melanoma, J. Med. Chem. 34: 315, 1991.CrossRefGoogle Scholar
  18. (b) H. Ketz, W. Tjarks, and D. Gabel, Synthesis ofnido-carborate containing thioureas, Tetrahedron Lett. 31: 4003, 1990.CrossRefGoogle Scholar
  19. 10.
    T. Nakagawa, and K. Ando, Syntheses of chlorpromazine undecahydrododecaborate and nonahydrodecaborate — Promising agents for neutron capture therapy of malignant melanoma, Chem. Pharm. Bull. 24: 778, 1976.PubMedCrossRefGoogle Scholar
  20. 11.
    J.K. Prashar, D.E. Moore, J.G. Wilson, and B.J. Allen, Synthesis of carborany]- phenylalanine for potential use in neutron capture therapy, Advances in Neutron Capture Ther, Ed. A.H. Soloway, R.F. Barth, and D.E. Carpenter, Plenum, New York, p 265, 1993.Google Scholar
  21. 12.
    F. Wellmann, R. Abraham, R. Mller, and D. Gabel, Synthesis and Biological Behavior of a boronated analogue of the antiestrogen U 23,469-M, Z. Naturforsch. 46: 252, C1991.Google Scholar
  22. 13.
    (a) M. Miura, D. Gabel, G. Oenbrink, and R.G. Fairchild, Preparation of carboranyl porphyrins for boron neutron capture therapy, Tetrahedron Lett. 31: 2247, 1990.CrossRefGoogle Scholar
  23. (b) S.B. Kahl, and M.-S. Koo, Synthesis of tetrakis-carborane-carboxylate esters of 2,4- bis-(a,(3-dihydroxyethyl)-deuteroporphyrin IX, J. Chem. Soc. Chem. Commun., 1769, 1990.Google Scholar
  24. 14.
    (a) R.R. Kane, R.H. Pak, and M.F. Hawthorne, Solution-phase segment. synthesis of boron-rich peptides, J. Org. Chem. 58: 991, 1993.CrossRefGoogle Scholar
  25. (b) R.R. Kane, C.S. Lee, K. Drechsel, and M.F. Hawthorne, Solution-phase synthesis of boron-rich phosphates, J. Org. Chem. 58: 3227, 1993.CrossRefGoogle Scholar
  26. (c) R.R. Kane, K. Drechsel, and M.F. Hawthorne, Automated syntheses of carborane-derived homogeneous oligophosphates: Reagents for use in the immunoprotein-mediated boron neutron capture therapy (BNCT) of cancer, J. Am. Chem. Soc. 115: 8853, 1993.CrossRefGoogle Scholar
  27. 15.
    (a) A.D. Whittaker, D.P. Kelly, M. Pardee, and R.F. Martin, Synthesis of 1°B- and I57Gd-labelled DNA ligands for neutron capture therapy, Progress in Neutron Capture Thee. Cancer, Ed. B.J. Allen, D.E. Moore, and B.V. Harrington, Plenum, New York, p 231, 1992.Google Scholar
  28. (b) A. Corder, R.F. Martin, A. Whittaker, D.P. Kelly, H. Meriaty, and B.J. Allen, Evaluation of a 10B-labelled DNA ligand, Advanced in Neutron Capture Thee, Ed. A.H. Soloway, R.F. Barth, and D.E. Carpenter, Plenum, New York, p 377, 1993.Google Scholar
  29. 16.
    For example, see R.S. Youngquist, and P.B. Dervan, Sequence-specific recognition of B-DNA by oligo(N-methylpyrrolecarboxamide)s, Proc. Natl. Acad. Sci. USA, 82: 2565, 1985.PubMedCrossRefGoogle Scholar
  30. 17.
    E. Nishiwaki, S. Tanaka, H. Lee, and M. Shibuya, Efficient synthesis of oligo-N- methylpyrrolecarboxamides and related compounds, Heterocycles 27: 1945, 1988.CrossRefGoogle Scholar
  31. 18.
    (a) H. Nemoto, J.G. Wilson, H. Nakamura, and Y. Yamamoto, Polyols of a cascade type as a water-solubilizing element of carborane derivatives for boron neutron capture therapy, J. Org. Chem. 57: 435, 1992.CrossRefGoogle Scholar
  32. (b) H. Nemoto, J. Cai, and Y. Yamamoto, Synthesis of a water-soluble o-Carborane bearing a uracil moiety via a palladium-catalyzed reaction under essentially neutron conditions, J. Chem. Soc. Chem. Commun. 577, 1994.Google Scholar
  33. 19.
    R.C. Haushalter, W.H. Butler, and R.W. Rudolph, The preparation and characterization of several meso-tetracarbonylporphyrins, J. Am. Chem. Soc. 103: 2620. 1981.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Yoshinori Yamamoto
    • 1
  • Jianping Cai
    • 1
  • Hiroyuki Nakamura
    • 1
  • Naoki Sadayori
    • 1
  • Hisao Nemoto
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceTohoku UniversitySendaiJapan
  2. 2.Department of Applied Molecular ScienceInstitute for Molecular ScienceOkazaki 444Japan

Personalised recommendations