The Compound Factor of NA2B12H11SH and the Relative Biological Effectiveness of Recoil Protons for Neurological Damage in Boron Neutron Capture Therapy

  • Detlef Gabel
  • Katharina H. I. Philipp
  • René Huiskamp


Boron neutron capture therapy (BNCT) utilizes the release of particles with a high linear energy transfer (high-LET particles) following the capture of thermal neutrons in boron-10. As in all radiotherapy modalities, the aim of BNCT is to deposit a tumoricidal radiation dose in the tissue to be eliminated, while at the same time sparing the healthy tissue. In contrast to conventional radiotherapy, this is not achieved by physical targeting of the beam, but rather by physiological targeting of the tumor with boron-containing compounds.


Fast Neutron Boron Concentration Boron Neutron Capture Therapy Relative Biological Effectiveness Recoil Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.A. Davis, J.B. Little, M.M.S. Ayyangar, and A.R. Reddy, Relative biological effectiveness of the 10B(n,a)7Li reaction in HeLa cells, Radiat. Res. 43: 534–553, 1970.PubMedCrossRefGoogle Scholar
  2. 2.
    D. Gabel, R.G. Fairchild, B. Larsson, and H.G. Borner, The relative biological effectiveness in V79 chinese hamster cells of the neutron capture reactions in boron and nitrogen, Radial. Res. 98: 307–316, 1984.CrossRefGoogle Scholar
  3. 3.
    M. Ichihashi, A. Sasase, T. Hiramoto, Y. Mishima, T. Fukuda, and T. Kobayashi, RBE of thermal neutron capture therapy using10B1-paraboronophenylalanine for human and B-I6 melanoma cells, Strahlenther Onkol. 165: 198, 1989.PubMedGoogle Scholar
  4. 4.
    J.A.Coderre, M.S. Makar, P.L. Micca, M.M. Nawrocky, D.D. Joel, D.N. Slatkin, and H.1. Amols, Derivations of RBEs for the high-LET radiation produced during boron neutron capture irradiations of the 9L rat gliosarcoma in vitro and in vivo, Int. J. Radiation Onkol. Biol. Phys. 27: 1121–1129, 1993.CrossRefGoogle Scholar
  5. 5.
    K. Kitao, A method for calculating the absorbed dose near interface from 10B(n,a)7Li reaction, Radial. Res. 61: 304–315, 1975.CrossRefGoogle Scholar
  6. 6.
    T. Kobayashi and K. Kanda, Analytical calculation of boron-10 dosage in cell nucleus for neutron capture therapy, Radial. Res. 91: 77–94, 1982.CrossRefGoogle Scholar
  7. 7.
    D. Gabel, S. Foster, and R.G. Fairchild, The Monte-Carlo simulation of the biological effect of the 10B(n,a)7Li reaction in cells and tissue and its implication for boron neutron capture therapy, Radial. Res. 111: 14–25, 1987.CrossRefGoogle Scholar
  8. 8.
    R.A. Gahbauer, R.G. Fairchild, J.H. Goodman, and T.H. Blue, Can relative biological effectiveness be used for treatment planning in boron neutron capture therapy? in: “Tumor Response Monitoring and Treatment Planning,” A. Breit, ed., Springer Verlag, Berlin, 1992, pp. 755–758.Google Scholar
  9. 9.
    J. Hiratsuka, H. Fukuda, K. Kobayashi, H. Karashima, K. Yoshino, Y. lmahjo, and Y. Mishima, The relative biological effectiveness of 10B-neutron-capture therapy for early skin reaction in the hamster, Radial. Res. 128: 186–191, 1991.CrossRefGoogle Scholar
  10. 10.
    O.K. Harling, J.A. Bernard, and R.G. Zamenhof. “Neutron Beam Design, Development and Performance for Neutron Capture Therapy.” Plenum Press, New York, 1990.CrossRefGoogle Scholar
  11. 11.
    R.V. Dorn III, M.L. Griebenow, A.L. Ackermann, F.J. Wheeler, K.M. Bradshaw, T.L. Richards, D.E. Wessol, Y.D. Harker, D.W. Nigg, P.D. Randolph, and W.F. Bauer, The Idaho power burst facility/boron neutron capture therapy (PBF/BNCT) program overview, in: “Progress in Neutron Capture Therapy for Cancer,” D.E. Moore, B.V. Harrington, and B.J. Allen, eds., Plenum Press, New York, 1992, pp. 13–20.CrossRefGoogle Scholar
  12. 12.
    D. Gabel and R.L. Moss. `Boron Neutron Capture Therapy: Toward Clinical Trials of Glioma Treatment,“ Plenum Press, New York, 1992.CrossRefGoogle Scholar
  13. 13.
    D. Haritz, D. Gabel, and R. Huiskamp, Clinical phase-I-study of Na,B12H11SH (BSH) in patients with malignant glioma as precondition for boron neutron capture therapy (BNCT), Int. J. Radiation Oncol. Biol. Phys. 28: 1175–1181, 1994.CrossRefGoogle Scholar
  14. 14.
    A. Siefert, J. Casado, R.L. Moss, P. Gavin, K. Philipp, R. Huiskamp, and E. Dühmke, Healthy tissue tolerance studies for BNCT at the high flux reactor in Petten–first results, in: “Boron Neutron Capture Therapy. Toward Clinical Trials of Glioma Treatment,” D. Gabel and R. Moss, eds., Plenum Press, New York, 1992, pp. 179–185.CrossRefGoogle Scholar
  15. 15.
    P.R. Gavin, F.J. Wheeler, R. Huiskamp, A. Siefert, S. Kraft, and C. DeHaan, Large animal model studies of normal tissue tolerance using an epithennal neutron beam and borocaptate sodium, in: “Boron Neutron Capture Therapy. Toward Clinical Trials of Glioma Treatment,” D. Gabel and R. Moss, eds., Plenum Press, New York, 1992, pp. 197–206.CrossRefGoogle Scholar
  16. 16.
    P. Watkins, Present status of the three-dimensional treatment planning methodologies for the Petten BNCT facility, in: “Boron Neutron Capture Therapy. Toward Clinical Trials of Glioma Treatment,” D. Gabel and R. Moss, eds., Plenum Press, New York, 1992, pp. 101–110.CrossRefGoogle Scholar
  17. 17.
    J.R. Fike, C.E. Cann, R.L. Davis, J.K. Borcich, T.L. Philipps, and L.B. Russell, Computed tomography analysis of the canine brain: effects of hemibrain x-irradiation, Radiat. Res. 99: 294–310, 1984.PubMedCrossRefGoogle Scholar
  18. 18.
    P.R. Gavin, R. Huiskamp, F.J. Wheeler, and M.L. Griebenow, Computer modeling the boron compound factor in normal brain tissue, in: “Advances in Neutron Capture Therapy,” A.H. Soloway, R.F. Barth, and D.E. Carpenter, eds., Plenum Press, New York, 1993, pp. 591–595.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Detlef Gabel
    • 1
  • Katharina H. I. Philipp
    • 2
  • René Huiskamp
    • 2
  1. 1.Department of ChemistryUniversity of BremenBremenGermany
  2. 2.Radiobiology and RadioecologyECN PettenPettenThe Netherlands

Personalised recommendations