Membrane Properties of Lewis Lung Tumor Cells with “Low” and “High” Metastatic Capacity: Anti-Metastatic Effect of a Glycosaminoglycan Biosynthesis Blocking Agent 5-Hexyl-2′-Deoxyuridine (HUdR)

  • Károly Lapis
  • József Timár
  • Katalin Pál
  • András Jeney
  • Ferenc Timár
  • László Kopper


The main cause of a cancer patient’s death is the development of tumor metastases. Therefore, understanding of biological events of metastasization has a great clinical impact (1). A number of important steps in this process are mediated by the surface characteristics of tumor cells, particularly by surface glycoconjugate molecules (2,3,4).


Metastatic Capacity Antimetastatic Effect Isotope Incorporation Lewis Lung Tumor Cellular Heparan Sulphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. J. Fidler, Recent Concepts of Cancer Metastasis and Their Implications for Therapy, Cancer Treat. Rep. 68: 193 (1984).PubMedGoogle Scholar
  2. 2.
    V. Schirrmacher, P. Altevogt, M. Fogel, J. Dennis, C. A. Waller, D. Barz, R. Schwartz, R. Cheinsong-Popov, G. Springer, P. J. Robinson, T. Nebec, W. Brossmer, I. Vlodaysky, N. Paweletz, H.-P. Zimmerman, and G. Uhlenbruck, Importance of Cell Surface Carbohydrates in Cancer Cell Adhesion, Invasion, and Metastasis, Invasion Metast. 2: 313 (1982).Google Scholar
  3. 3.
    G. L. Nicolson and G. Poste, Tumor Implantation and Invasion at Metastatic Sites, Int. Rev. Exp. Path. 25: 77 (1983).PubMedGoogle Scholar
  4. 4.
    G. L. Nicolson, Cell Surface Molecules and Tumor Metastatasis Regulation of Metastatic Phenotypic Diversity, Exp. Cell. Res. 150: 3 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    L. Kopper, T. V. Hahn, and K. Lapis, Experimental Model for Liver Metastasis Formation Using Lewis Lung Tumor, J. Cancer Res. Clin. Oncol. 103: 31 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    K.Pâl, L. Kopper, and K. Lapis, Increased Metastatic Capacity of Lewis Lung Tumor Cells by In Vivo Selection Procedure, Invasion Metast. 3: 174 (1983).Google Scholar
  7. 7.
    K. Pal, L. Kopper, J. Timâr, J. Rajnai, and K. Lapis, Comparative Study on Lewis Lung Tumor Lines with Low and High Metastatic Capacity. I. Growth Rate, Morphology and Resistance to Host Defnese, Invasion Metast. 5: 159 (1985).Google Scholar
  8. 8.
    K. Lapis, J. Timar, F. Timâr, K. Pal, and L. Kopper, Membrane Properties, Extracellular Matrix and Heterotypic Interactions of Lewis Lung Tumor Cells with “Low” and “High” Metastatic Capacity. Abstract in: “Biochemistry and Molecular Genetics of Cancer Metastasis,” (1985).Google Scholar
  9. 9.
    J. Timar, E. M6czar, F. Timar, K. Pal, L. Kopper, K. Lapis, and A. Jeney, Comparative Study on Lewis Lung Tumor Lines with “Low” and “High” Metastatic Capacity. II. Cytochemical and Biochemical Evidences for Differences in Glycosaminoglycans, Clin. Exp. Metast., accepted for publication (1985).Google Scholar
  10. 10.
    J. Füréz, K. Pal, F. Budavari, and K. Lapis, Physicochemical Properties of Tumor Cells with Different Metastatic Potential, Neoplasma, accepted for publication (1985).Google Scholar
  11. 11.
    L. Ötvös, A. Szabolcs, J. T. Sagi, and A. Szemz6, Study of the Synthesis of 5-Alkyl and 5-Halogen Substituted 2’-Deoxyuridines, Nucleic Acids Res. 1: 49 (1975).Google Scholar
  12. 12.
    K. Lapis, A. Jeney, J. Timar, G. Ecsedi, E. Hidvégi, and L. Kopper, Intracellular Structure Formation and Alteration of Glycoprotein Metabolism Induced by 5-hexyl-2’-deoxyuridine (HUdR), Proc. Am. Assoc. Cancer Res. 23: 217 (1982).Google Scholar
  13. 13.
    A. Jeney, L. Kopper, and K. Lapis, Cellular and Molecular Targets of Cytotoxic Drugs, in: “Regulation and Control of Cell Proliferation,” K. Lapis and A. Jeney, eds., Akaddmiai Kiad6, Budapest (1984).Google Scholar
  14. 14.
    K. Pal, J. Timar, L. Kopper, and K. Lapis, Comparative Study of the Chemo-sensitivity of Differently Metastasizing LLT Lines, in: “Treatment of Metastasis: Problems and Prospects,” K. Hellmann and S. A. Eccles, eds., Taylor and Francis, Philadelphia (1985).Google Scholar
  15. 15.
    A. Szabolcs, G. Kruppa, J. Sagi, and L. 0ty s, Unnatyial Nucleosides and Nucleotides. III. Preparation of 2- C and 4- C Labeled 5-Alkyluracils and 5-Alkyl-2’-deoxyuridines, J. Labelled Comp. Radiopharma ceut. XIV: 713 (1978).CrossRefGoogle Scholar
  16. 16.
    G. H. Hogeboom, Fractionation of Cell Components of Animal Tissues, Methods Enzymol. 1: 16 (1955).CrossRefGoogle Scholar
  17. 17.
    F. I. Scott, A. P. Fraccastoro, and E. B. Taft, Studies on Histochemistry. I. Determination of Nucleic Acids in Microgram Amounts of Tissue, J. Histochem. Cytochem. 4: 1 (1956).PubMedCrossRefGoogle Scholar
  18. 18.
    A. Wasteson, K. Uthnek, and B. Westernak, A Novel Assay for the Biosynthesis of Sulphated Polysaccharide and its Application to Studies on the Effect of Somatomedin on Cultured Cells, Biochem. J. 136: 1069 (1973).PubMedGoogle Scholar
  19. 19.
    W. P. Beek, L. A. Smets, and P. Emmelot, Increased Sialic Acid Density in Surface Glycoprotein on Transformated and Malignant Cells - A General Phenomenon, Cancer Res. 33: 2913 (1973).PubMedGoogle Scholar
  20. 20.
    L. A. Liotta, C. N. Rao, and S. H. Barsky, Tumor Invasion and the Extra-cellular Matrix, Lab. Invest. 49: 636 (1983).PubMedGoogle Scholar
  21. 21.
    M. M. Mareel, and M. deMets, Effect of Microtubule Inhibitors on Invasion and on Related Activities of Tumor Cells, Int. Rev. Cytol. 90: 125 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    M. E. Bracke, R. M.-L. Cauwenberge, and M. M. Mareel, (+)-Catchin Inhibits the Invasion of Malignant Fibrosarcoma Cells into Chick Heart In Vitro, Clin. Exptl. Metast. 2: 161 (1984).CrossRefGoogle Scholar
  23. 23.
    G. A. Storme, W. E. Berdel, W. J. van Bl.itterswijk, E. A. Bruyneel, K. Bruyne, and M. Mareel, Antiinvasive Effect of Racemic 1–0-octadecyl 2–0-methylglycero-3-phosphocholine on MO4 Mouse Fibrosarcoma Cells In Vitro, Cancer Res. 45: 351 (1985).PubMedGoogle Scholar
  24. 24.
    R. J. Hooghe, N. Schaaf-Lafontaine, E. L. Hooghe-Peters, F. Vander Plaetse, L. de Saint-Georges, P. Dorling, and M. Janowski, Integrity of Glycoprotein Protein Complex Sugars Required for Homing but not for Several Other Membrane-mediated Functions, Cell Biochem. and Function 2: 102 (1984).CrossRefGoogle Scholar
  25. 25.
    R. J. Bernacki and W. Korytnyk, Development of Membrane Sugar and Nucleotide Sugar Analogs as Potential Inhibitors or Modifiers of Cellular Glycoconjugates. Section I, in: “The Glycoconjugates,” M. I. Horowitz, ed., Academic Press, New York (1982).Google Scholar
  26. 26.
    M. Mareel, C. Dragonetti, and R. Hooghe, Inhibitors of Glycoprotein Synthesis and Processing: A New Class of Antiinvasive Agentsp (in preparation; 1985 ).Google Scholar
  27. 27.
    R. Schwartz, C. T. Nebe, and V. Schirrmacher, Different Expression and Shedding of Glycosaminoglycan by High and Low Metastatic Lymphoma Cells, in: “Proceedings of Bat-Sheve Seminar on Tumor Metastasis: Control Mechanisms,” Tiberias (1983).Google Scholar
  28. 28.
    M. Becker, E. Moczar, V. Lascaux, and M. F. Poupon, Relationship between In Vitro Effect and In Vivo Control of Metastasis Induced by Hydrocortisone on Rat Rhabdomyosarcoma Model, in: “Proceedings of the Conference on Treatment of Metastasis: Problems and Prospects,” H. Kellerma and S. A. Eccles, eds., Taylor and Francis, Philadelphia (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Károly Lapis
    • 1
  • József Timár
    • 1
  • Katalin Pál
    • 1
  • András Jeney
    • 1
  • Ferenc Timár
    • 1
  • László Kopper
    • 1
  1. 1.Ist Institute of Pathology and Experimental Cancer ResearchSemmelweis Medical UniversityBudapestUSA

Personalised recommendations