Skip to main content

Biological and Clinical Implications of the Stem Cell Concept in Human Malignancy

  • Chapter
Cancer Biology and Therapeutics

Abstract

Further advances in cancer biology and therapeutics depend, among other things, on the development of knowledge of the organization and biological potential of cells within tumors. Two widely supported but extreme views of tumor cell organization have been expressed: 1) the view of tumors as consisting of undifferentiated cells, each with potential for tumor development but with phenotypic heterogeneity imposed by genetic and epigenetic events. Also, often superimposed on this model is the notion of “de-differentiation” which implies that carcinogenesis can occur in differentiated cells which can subsequently re-express the phenotype of more primitive cells. 2) The view of tumors as representing a form of the normal differentiating tissue from which the tumor derived. This implies heterogeneity of cells within tumors with respect to differentiation, and also implies that the likely target for carcinogenesis is the stem cell population. Much of the support for the former view is based on study of transplantable tumors in animals while the importance of cell differentiation has been reinforced mostly by study of spontaneous animal or human tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. S. Potten, R. Schofield, and L. G. Lajtha, A Comparison of Cell Replacement in Bone Marrow, Testis, and Three Regions of Surface Epithelium, Biochim. Biophys. Acta 560: 281 (1979).

    PubMed  CAS  Google Scholar 

  2. C. P. Leblond and H. Cheng, Identification of Stem Cells in the Small Intestine of the Mouse, in: “Stem Cells of Renewing Populations,” A. B. Cairnie, P. K. Lal_a, and D. E. Osmond, eds., Academic Press, New York (1975).

    Google Scholar 

  3. W. J. Mackillop, A. Ciampi, J. E. Till, and R. N. Buick, A Stem Cell Model for Human Tumor Growth: Implications for Tumor Cell Clonogenic Assays, J. Nat. Cancer. Inst. 70: 9 (1983).

    PubMed  CAS  Google Scholar 

  4. J. E. Till and E. A. McCulloch, A Direct Measurement of the Radiation Sensitivity of Normal Mouse Bone Marrow, Radiat. Res. 18: 96 (1961).

    Article  Google Scholar 

  5. J. E. Till, E. A. McCulloch, and L. Siminovitch, A Stochastic Model of Stem Cell Proliferation, Based on the Growth of Spleen Colony-forming Cells, Proc. Natl. Acad. Sci. U.S.A. 51: 2. 9 (1964).

    Google Scholar 

  6. R. S. Bush and R. P. Hill, The Kinetics of Cell Reproductive Inhibition, Advances in Radiation Research, Biology and Medicine, 1: 397 (1973).

    Google Scholar 

  7. R. S. Bush and R. P. Hill, Biologic Discussions Augmenting Radiation Effects and Model Systems, Laryngoscope 85: 1119 (1975).

    Article  PubMed  CAS  Google Scholar 

  8. A. Ciampi, L. Kates, R. N. Buick, Y. Kruikov, and J. E. Till, A Multitype Galton-Watson Process as a Model for Proliferating Human Factor Cell Populations Derived from Stem Cells, Cell and Tissue Kinetics, in press (1986).

    Google Scholar 

  9. P. Selby, R. N. Buick, and I. Tannock, A Critical. Appraisal of the “Human Tumor Stem Cell Assay,” N. Eng. J. Med. 308: 129 (1983).

    Article  CAS  Google Scholar 

  10. A-R. Hanauske, U. Hanauske, and D. D. Von Hoff, The Human Tumor Cloning Assay in Cancer Research and Therapy, Current Prob. in Cancer 9:4 (1985).

    Google Scholar 

  11. R. N. Buick and M. N. Pollack, Perspectives on Clonogenic Tumor Cells, Stem Cells and Oncogenes, Cancer Res. 44: 4904 (1984).

    Google Scholar 

  12. R. N. Buick, M. D. Minden, and E. A. McCulloch, Self-renewal in Culture of Proliferative Blast Progenitor Cells in Acute Myeloblastic Leukemia, Blood 54: 95 (1979).

    PubMed  CAS  Google Scholar 

  13. R. N. Buick and W. J. Mackillop, Measurement of Self-renewal in Culture of Clonogenic Cells from Human Ovarian Carcinoma, Br. J. Cancer 44: 349 (1981).

    Article  PubMed  CAS  Google Scholar 

  14. S. P. Thomson and F. L. Meyskens, Jr., Method for Measurement of Self-renewal Capacity of Clonogenic Cells from Biopsies of Metastatic Human Malignant Melanoma, Cancer Res. 42: 460 (1982).

    Google Scholar 

  15. J-P. Bizzari and W. J. Mackillop, The Estimation of Self-renewal in the Clonogenic Cells of Human Solid Tumors: A Comparison of Secondary Plating-efficiency and Colony Size, Br. J. Cancer 52: 189 (1985).

    Article  PubMed  CAS  Google Scholar 

  16. K. M. Tveit, O. Fodstad, and A. Pihl, The Usefulness of Human Tumor Cell Lines in the Study of Chemosensitivity. A Study of Malignant Melanomas, Int. J. Cancer 28: 403 (1981).

    Article  PubMed  CAS  Google Scholar 

  17. D. N. Carney, A. F. Gazdar, P. A. Bunn, and J. G. Guccion, Demonstration of the Stem Cell Nature of Clonogenic Tumor Cells from Lung Cancer Patients, Stem Cells 1: 149 (1981).

    Google Scholar 

  18. R. N. Buick, Cell Heterogeneity in Human Ovarian Carcinoma, J. Cell Physiol. (Suppl. 3)3: 117 (1984).

    Google Scholar 

  19. F. L. Meyskens, Jr., S. P. Thomson, and T. E. Moon, Similar Self-renewal Properties for Different Sizes of Human Primary Melanoma Colonies Replated in Agar, Cancer Res. 45: 1101 (1985).

    PubMed  Google Scholar 

  20. S. S. Guraya, Recent Advances in the Morphology, Histochemistry and Biochemistry of the Developing Mammalian Ovary, Int. Rev. Cytol. 51: 49 (1977).

    Article  PubMed  CAS  Google Scholar 

  21. S. Knauf and G. I. Urbach, Identification, Purification and Radioimmunoassay of NB/70K, a Human Ovarian Tumor-association Antigen, Cancer Res. 41: 1351 (1981).

    PubMed  CAS  Google Scholar 

  22. R. C. Bast, Jr., J. L. Klug, E. St. John, E. Janison, J. M. Niloff, H. Lazarus, R. S. Berkowitz, T. Leavitt, C. T. Griffiths, L. Parker, V. R. Zurawski, Jr., and R. E. Knapp, A Radioimmunoassay Using a Monoclonal Antibody to Monitor the Course of Epithelial Ovarian Cancer, N. Eng. J. Med. 309: 883 (1983).

    Article  Google Scholar 

  23. J-P. Bizzarl, W. J. Mackillop, and R. N. Buick, Cellular Specificity of NB/70K, a Putative Human Ovarian Tumor Antigen, Cancer Res. 43: 864 (1983).

    Google Scholar 

  24. W. J. Mackillop and R. N. Buick, Cellular Heterogeneity in Human Ovarian Carcinoma Studied by Density Gradient Fractionation, Stem Cells 1: 355 (1981).

    Google Scholar 

  25. W. J. Mackillop, S. S. Stewart, and R. N. Buick, Tumor Progression Studied by Analysis of Cellular Features of Serial Ascitic Ovarian Carcinoma Tumors, Cancer Res. 43: 874 (1983).

    PubMed  CAS  Google Scholar 

  26. W. J. Mackillop, J-P. Bizzari, and G. K. Ward, Cellular Heterogeneity in Normal and Neoplastic Human Urothelium, Cancer Res. 45: 4360 (1985).

    PubMed  CAS  Google Scholar 

  27. L. J. Chang, J. E. Till, and E. A. McCulloch, The Cellular Basis of Self-Renewal in Culture by Human Acute Myeloblastic Leukemia Blast Cell Progenitors, J. Cell. Physiol. 102: 217 (1980).

    Article  PubMed  CAS  Google Scholar 

  28. E. A. McCulloch, J. E. Curtis, H. A. Messner, J. S. Senn, and T. P. Germanson, The Contribution of Blast Cell Properties to Outcome Variation in Acute Myeloblastic Leukemia, Blood 59: 601 (1982).

    PubMed  CAS  Google Scholar 

  29. S. E. Salmon, A. W. Hamburger, B. Soehnlen, B. G. M. Durie, D. S. Alberts, and T. E. Moon, Quantitation of Differential Sensitivity of Human Tumor Stem Cells to Anticancer Drugs, N. Eng. J. Med. 298: 1321 (1978).

    Article  CAS  Google Scholar 

  30. R. H. Shoemaker, M. K. Wolpert-DeFillipes, D. H. Kern, M. M. Lieber, R. W. Makuch, N. R. Melnick, W. T. Miller, S. E. Salmon, R. M. Simon, J. M. Venditti, and D. D. Von Hoff, Application of a Human Tumor Colony Forming Assay to New Drug Screening, Cancer Res. 45: 2145 (1985).

    PubMed  CAS  Google Scholar 

  31. J. H. Goldie and A. J. Coldman, A Mathematical Model for Relating the Drug Sensitivity of Tumors to Their Spontaneous Mutation Rate, Cancer Treat. Rep. 63: 1727 (1979).

    PubMed  CAS  Google Scholar 

  32. J. H. Goldie and A. J. Coldman, Quantitative Model for Multiple Levels of Drug Resistance in Clinical. Tumors, Cancer Treat. Rep. 67: 923 (1983).

    PubMed  CAS  Google Scholar 

  33. R. S. Bush, G. DeBoer, and R. P. Hill, Long Term Survival with Gynecological Cancer, in: “Prolonged Arrest of Cancer,” B. A. Stoll, ed., John Wiley and Sons, New York (1982).

    Google Scholar 

  34. K-R. Trott, The Cellular Interpretation of Tumor Radioresistance, Cancer Treat. Rev. 11: 81 (1984).

    Article  PubMed  Google Scholar 

  35. H. E. Skipper and F. M. Schabel, Jr., Tumor Stem Cell Heterogeneity: Implications with Respect to Classification of Cancers by Therapeutic Effect, Cancer Treat. Rep. 68: 43 (1984).

    PubMed  CAS  Google Scholar 

  36. W. L. McGuire, J. H. Goldie, S. E. Salmon, and V. Ling, Strategies to Identify or Prevent Drug Resistance in Cancer, Breast Cancer Res. Treat. 5: 257 (1985).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Buick, R.N. (1987). Biological and Clinical Implications of the Stem Cell Concept in Human Malignancy. In: Cory, J.G., Szentivanyi, A. (eds) Cancer Biology and Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9564-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9564-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9566-0

  • Online ISBN: 978-1-4757-9564-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics