Skip to main content

Biochemistry of Methotrexate: Teaching an Old Drug New Tricks

  • Chapter
Cancer Biology and Therapeutics

Abstract

Chemotherapy, despite its shortcomings, continues to be one of the major modalities in the treatment of cancer. Most of the drugs in current use were discovered empirically, i.e., through screening programs. In recent years, however, a more rational approach for drug development has emerged, based upon a four-stage strategy: a) the first stage involves the identification of opportune targets. These are usually biochemical parameters that are closely related to cell replication, e.g., DNA (or RNA) or enzymes responsible for the synthesis of the nucleic acids and their nucleotide precursors. Illustrative of this approach is the work of Weber (1), who has developed a comprehensive program for identifying enzymes that are rate-limiting in the synthesis of purine or pyrimidine nucleotides and are present in increased amounts in tumor cells; b) Sites on the target for drug interaction are defined. For DNA, these are nucleotide sequences with enhanced susceptibility to intercalating or covalent-binding agents; specificity of these sites, however, is usually not stringent. Substrate-binding sites on enzymes offer better possibilities for specificity. Some insight into the dimensions of these sites and the amino acids that interact with ligands can be obtained by comparison of binding constants for substrates and inhibitors, by chemical modification with group-specific reagents, and by NMR measurements. Accurate three-dimensional pictures of the sites, however, require X-ray diffraction analyses of the crystalline enzymes. This latter technique has been employed in the elegant studies of Kraut and Matthews [reviewed in (2)] for visualizing the Methotrexate (MTX) binding site on dihydrofolate reductase; c) Information about the drug-binding sites, along with computer graphic modeling, then provides guidance for the chemical synthesis of compounds tailored to fit with a high degree of specificity and affinity. Montgomery, Robins, Hitchings and Elion are among the leaders in this field; d) Finally, promising compounds that interact satisfactorily with their targets are examined for other criteria necessary for clinical acceptance, viz., facile uptake by cells (via active transport or diffusion),cytotoxicity (with selectivity toward tumor cells), distribution to tumorbearing sites in the body, and favorable pharmacologic characteristics such as resistance to metabolism and/or excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Weber, Biochemical Strategy of Cancer Cells and the Design of Chemotherapy, G. H. A. Clowes Memorial Lecture, Cancer Res. 43: 3466 (1983).

    PubMed  CAS  Google Scholar 

  2. D. A. Matthews, R. A. Alden, J. T. Bolin, D. J. Filman, S. T. Freer, N. Xuong, and J. Kraut, X-ray Structural Studies of Dihydrofolate Reductase, in: “Chemistry and Biology of Pteridines,” R. L. Kisliuk and G. M. Brown, eds., Elsevier, New York (1979).

    Google Scholar 

  3. J. A. Montgomery, Has the Well Gone Dryp, Cain Memorial Lecture, Cancer Res. 42: 3911 (1982).

    PubMed  CAS  Google Scholar 

  4. G. Weber, ed., “Advances in Enzyme Regulation,” Volume 24, Pergamon Press, Oxford (1986).

    Google Scholar 

  5. A. Goldin, Studies with High Dose Methotrexate-Historical Background, Cancer Treat. Rep. 62: 307 (1978).

    PubMed  CAS  Google Scholar 

  6. S. Farber, L. K. Diamond, R. D. Mercer, R. F. Sylvester, and J. A. Wolff, Temporary Remissions in Acute Leukemia in Children Produced by Folic Acid Antagonist, 4-Aminopteroylglutamic Acid (Aminopterin), N. Eng. J. Med. 238: 787 (1948).

    Article  CAS  Google Scholar 

  7. J. R. Bertino, Toward Improved Selectivity in Cancer Chemotherapy: Richard and Hinda Rosenthal Foundation Award Lecture, Cancer Res. 39: 293 (1979).

    PubMed  CAS  Google Scholar 

  8. C. A. Nichol and A. D. Welch, On the Mechanism of Action of Aminopterin, Proc. Soc. Exptl. Biol. Med. 74: 403 (1950).

    CAS  Google Scholar 

  9. M. J. Osborn, M. Freeman, and F. M. Huennekens, Inhibition of Dihydrofolic Reductase by Aminopterin and Amethopterin, Proc. Soc. Exptl. Biol. Med. 97: 429 (1958).

    CAS  Google Scholar 

  10. G. P. Mell, J. M. Whiteley, and F. M. Huennekens, Purification of Dihydrofolate Reductase via Amethopterin-aminoethyl Starch, J. Biol. Chem. 243: 6074 (1968).

    PubMed  CAS  Google Scholar 

  11. F. M. Huennekens, R. B. Dunlap, J. H. Freisheim, L. E. Gundersen, N. G. L. Harding, S. A. Levison, and G. P. Mell, Dihydrofolate Reductases: Structural and Mechanistic Aspects, Ann. N.Y. Acad. Sci. 186: 85 (1971).

    Article  PubMed  CAS  Google Scholar 

  12. R. L. Blakley, Dihydrofolate Reductase, in: “Folates and Pterins,” Volume 1, R. L. Blakley and S. J. Benkovic, eds., John Wiley and Sons, New York (1984).

    Google Scholar 

  13. J. H. Freisheim and D. A. Matthews, The Comparative Biochemistry of Dihydrofolate Reductase, in: “Folate Antagonists as Therapeutic Agents,” Volume 1, F. M. Sirotnak, J. J. Burchall, W. B. Ensminger, and J. A. Montgomery, eds., Academic Press, New York (1984).

    Google Scholar 

  14. F. Otting and F. M. Huennekens, TPNH-dependent Binding of Amethopterin by Dihydrofolate Reductase from Lactobacillus cases, Arch. Biochem. Biophys. 152: 429 (1972).

    Article  PubMed  CAS  Google Scholar 

  15. J. T. Bolin, D. J. Filman, D. A. Matthews, R. C. Hamlin, and J. Kraut, Crystal Structures of Eschericha cola and Lactobacillus cases Dihydrofolate Reductase Refined at 1.7 A Resolution, J. Biol. Chem. 257: 13650 (1982).

    PubMed  CAS  Google Scholar 

  16. L. F. Johnson, Molecular Biology of the Regulation of Dihydrofolate Reductase, in: “Folates and Pterins,” Volume 1, R. L. Biakley and S. J. Benkovic, eds., John Wiley and Sons, New York (1984).

    Google Scholar 

  17. N. P. Anagnou, S. J. O’Brien, T. Shimada, W. G. Nash, M-J. Chen, and A. W. Nienhuis, Chromosomal Organization of the Human Dihydrofolate Reductase Genes: Dispersion, Selective Amplification, and a Novel Form of Polymorphism, Proc. Natl. Acad. Sci. U.S.A. 81: 5170 (1984).

    Article  PubMed  CAS  Google Scholar 

  18. G. R. Gapski, J. M. Whiteley, J. I. Rader, P. L. Cramer, G. B. Henderson, V. Neef, and F. M. Huennekens, Synthesis of a Fluorescent Derivative of Amethopterin, J. Med. Chem. 18: 526 (1975).

    Article  PubMed  CAS  Google Scholar 

  19. F. M. Huennekens, K. S. Vitols, J. M. Whiteley, and V. G. Neef, Dihydrofolate Reductase, Methods Cancer Research 13: 119 (1976).

    Google Scholar 

  20. R. J. Kaufman, J. R. Bertino, and R. T. Schimke, Quantitation of Dihydrofolate Reductase in Individual Parental and Methotrexate-resistant Cells. Use of a Fluorescent Cell Sorter, J. Biol. Chem. 253: 5852 (1978).

    PubMed  CAS  Google Scholar 

  21. J. K. Sato, T. H. Duffy, S. B. Beckman, and F. M. Huennekens, Monoclonal Antibodies Against Dihydrofolate Reductase from Methotrexateresistant L1210 Cells, Proc. Am. Assoc. Cancer Res. 26: 229 (1985).

    Google Scholar 

  22. T. H. Duffy, S. B. Beckman, J. K. Sato, H. Nagae, K. S. Vitols, and F. M. Huennekens, Polymorphism of Dihydrofolate Reductase from a Methotrexate-resistant Sublime of L1210 Cells, Adv. Enz. Reg. 23: 3 (1985).

    Article  CAS  Google Scholar 

  23. R. B. Dunlap, L. E. Gundersen, and F. M. Huennekens, Interconversion of the Multiple Forms of Dihydrofolate Reductase from Amethopterin-resistant Lactobacillus casei, Biochem. Biophys. Res. Comm. 42: 772 (1971).

    Article  PubMed  CAS  Google Scholar 

  24. J. R. Bertino, D. R. Donohue, B. W. Gabrio, R. Silber, A. Alenty, M. Meyer, and F. M. Huennekens, Increased. Level of Dihydrofolic Reductase in Leukocytes of Patients Treated with Amethopterin, Nature 193: 140 (1962).

    Article  PubMed  CAS  Google Scholar 

  25. R. T. Schimke, Gene Amplification, Drug Resistance, and Cancer, Cancer Res. 44: 1735 (1984).

    PubMed  CAS  Google Scholar 

  26. B. D. Mariani and R. T. Schimke, Gene Amplification in a Single Cell Cycle in Chinese Hamster Ovary Cells, J. Biol. Chem. 259: 1901 (1984).

    PubMed  CAS  Google Scholar 

  27. M. Friedkin, Thymidylate Synthetase, Adv. Enzymol. 38: 235 (1973).

    PubMed  CAS  Google Scholar 

  28. L. E. Walker, N. M. Varki, and R. A. Reisfeld, Methotrexate-monoclonal Antibody Conjugates Suppress Growth of Human Lung Tumors in Nude Mice, Fed. Proc. 43: 1971 (1984).

    Google Scholar 

  29. T. H. Duffy, S. B. Beckman, and F. M. Huennekens, Multiple Forms of L1210 Dihydrofolate Reductase Differing in Affinity for Methotrexate, Biochem. Biophys. Res. Comm. 199: 352 (1984).

    Article  Google Scholar 

  30. T. H. Duffy, J. K. Sato, S. B. Beckman, and F. M. Huennekens, Factors Affecting the Catalytic Activity and Methotrexate Sensitivity of Multiple Forms of L1210 Dihydrofolate Reductase, Fed. Proc. 44: 679 (1985).

    Google Scholar 

  31. P. Reyes and F. M. Huennekens, Ion-dependent Activation of Dihydrofolate Reductase from L1210 Cells, Biochemistry 6: 3519 (1967).

    Article  PubMed  CAS  Google Scholar 

  32. B. T. Kaufman, Activation of Dihydrofolate Reductase by Organic Mercurials, J. Biol. Chem. 239: 669 (1964).

    PubMed  CAS  Google Scholar 

  33. E. K. Barbehenn and B. T. Kaufman, Alteration of the Properties of Chicken Liver Dihydrofolate Reductase as a Result of Modification of Tetrathionate, J. Biol. Chem. 255: 1978 (1980).

    PubMed  CAS  Google Scholar 

  34. B. T. Kaufman, Studies on Dihydrofolate Reductase II. The Activation of Dihydrofolate Reductase from Chicken Liver by Iodine, Proc. Natl. Acad. Sci. U.S.A. 56: 695 (1966).

    Article  PubMed  CAS  Google Scholar 

  35. T. H. Duffy, J. K. Sato, K. S. Vitols, and F. M. Huennekens, L1210 Dihydrofolate Reductase: Activation and Enhancement of Methotrexate Sensitivity, Adv. Enz. Reg. 24: 13 (1986).

    Article  Google Scholar 

  36. F. M. Huennekens, K. S. Vitols, and G. B. Henderson, Transport of Folate Compounds in Bacterial and Mammalian Cells, Adv. Enzymol. 47: 313 (1978).

    PubMed  CAS  Google Scholar 

  37. I. D. Goldman, Membrane Transport of Antifolates as a Critical Determinant of Drug Cytotoxicity, Adv. Exptl. Med. Biol. 84: 85 (1977).

    Article  CAS  Google Scholar 

  38. M. Dembo and F. M. Sirotnak, Membrane Transport of Folate Compounds in Mammalian Cells, in: “Folate Antagonists as Therapeutic Agents,” Volume 1, F. M. Sirotnak, J. J. Burchall, W. B. Ensminger, and J. A. Montgomery, eds., Academic Press, New York (1984).

    Google Scholar 

  39. G. B. Henderson, Transport of Folate Compounds into Cells, in: “Nutritional, Pharmacologic and Physiologic Aspects of Folates and Pterins,” R. L. Blakley and M. V. Whitehead, eds., John Wiley and Sons, New York, in press (1986).

    Google Scholar 

  40. G. B. Henderson, E. M. Zevely, and F. M. Huennekens, Purification and Properties of a Membrane-associated Folate-binding Protein from Lactobacillus casei, J. Biol. Chem. 252: 3760 (1977).

    PubMed  CAS  Google Scholar 

  41. G. B. Henderson, E. M. Zevely, and F. M. Huennekens, Irreversible Inactivation of the Methotrexate Transport System of L1210 Cells by Carbodiimide-activated Substrates, J. Biol. Chem. 255: 4829 (1980).

    PubMed  CAS  Google Scholar 

  42. G. B. Henderson and E. M. Zevely, Affinity Labeling of the 5-Methyltetrahydrofolate/Methotrexate Transport Protein of L1210 Cells by Treatment with an N-Hydroxysuccinimide Ester of (H)Methotrexate, J. Biol. Chem. 259: 4558 (1984).

    PubMed  CAS  Google Scholar 

  43. F. M. Sirotnak, P. L. Chello, J. R. Piper, J. A. Montgomery, and J. I. Degraw, Structural Specificity of Folate Analog Transport and Binding to Dihydrofolate Reductase in Murine Tumor and Normal Cells: Relevance to Therapeutic Efficacy, in: “Chemistry and Biology of Pteridines,” R. L. Kisliuk and G. M. Brown, eds., Elsevier, New York (1979).

    Google Scholar 

  44. G. Grundler and F. M. Huennekens, Interaction of cis-Diamminediaquoplatinum with Tetrahydrofolate, Proc. Am. Assoc. Cancer Res. 26: 260 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huennekens, F.M., Duffy, T.H., Pope, L.E., Grundler, G.G., Sato, J.K., Vitols, K.S. (1987). Biochemistry of Methotrexate: Teaching an Old Drug New Tricks. In: Cory, J.G., Szentivanyi, A. (eds) Cancer Biology and Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9564-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9564-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9566-0

  • Online ISBN: 978-1-4757-9564-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics