Skip to main content

The Biological Bases for the Design of Anticancer Agents

  • Chapter
  • 92 Accesses

Abstract

The problem of drug development for cancer chemotherapy is a difficult one, but it is clear that new and better drugs are needed if continuing advances are to be made in cancer treatment. Further improvements in surgery and radiation therapy will undoubtedly be made but these approaches are limited by the propensity of many solid tumors to metastasize to distant sites in the body; frequently the metastatic event occurs prior to diagnosis. Biological response modifiers may well become extremely useful adjuncts to surgery, radiation, and cytotoxic chemotherapy, but they seem unlikely to be curative alone when confronted with a large body burden of cancer cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. M. Schabel, Jr., H. E. Skipper, M. W. Trader, W. R. Laster, Jr., T. H. Corbett, and D. P. Griswold, Jr., Concepts for Controlling Drug-Resistant Tumor Cells, in: “Breast Cancer, Experimental and Clinical Aspects,” H. T. Mouridsen and T. Palshof, eds., Pergamon Press, Oxford (1980).

    Google Scholar 

  2. J. A. Montgomery, Synthetic Chemicals, Methods Cancer Res. 16: 3 (1979).

    CAS  Google Scholar 

  3. J. A. Montgomery, The Nitrosoureas, in: “Chronicles of Drug Discovery,” Volume 2, J. S. Bindra and D. Lednicer, eds., John Wiley and Sons, New York (1983).

    Google Scholar 

  4. T. P. Johnston, G. S. McCaleb, and J. A. Montgomery, Synthesis of Chlorozotocin, the 2-Chloroethyl Analog of the Anticancer Antibiotic Streptozotocin, J. Med. Chem. 16: 104 (1978).

    Google Scholar 

  5. B. A. Silver, A. L. Barlock, M. E. Lippman, T. Anderson, and M. I. Fisher, Phase II Trial of Chlorozotocin in Malignant Melanoma, Breast Cancer, and Other Solid Tumors, Cancer Treat. Rep. 66: 1229 (1982).

    PubMed  CAS  Google Scholar 

  6. J. A. Montgomery, Nitrosoureas, in: “Medicinal Chemistry VI,” M. A. Simkins, ed., Cotswold Press Ltd., Oxford (1979).

    Google Scholar 

  7. Y. F. Shealy, C. A. Krauth, R. F. Struck, and J. A. Montgomery, 2-Haloethylating Agents for Cancer Chemotherapy. 2-Haloethyl Sulfonates, J. Med. Chem. 26: 1168 (1983).

    Article  PubMed  CAS  Google Scholar 

  8. E. S. Newlands, G. Blackledge, J. A. Slack, C. Goddard, C. J. Brindley, L. Holden, and M. F. Stevens, Phase I Clinical Trial of Mitozolomide, Cancer Treat. Rep. 67: 801 (1985).

    Google Scholar 

  9. L. H. Schmidt, R. Fradkin, R. Sullivan, and A. Flowers, Comparative Pharmacology of Alkylating Agents, Cancer Chemother. Rep. Suppl. 2, Pt. 1, 49: 1 (1965).

    Google Scholar 

  10. B. J. Bowdon, G. P. Wheeler, D. J. Adamson, and Y. F. Shealy, Chemical Properties and Biological Effects of 2-Haloethyl Sulfonates, Biochem. Pharm. 33: 2951 (1984).

    Article  PubMed  CAS  Google Scholar 

  11. J. A. Montgomery, H. J. Thomas, R. W. Brockman, and G. P. Wheeler, Potential Inhibitors of Nucleotide Biosynthesis. 1. Nitrosoureidonucleosides. 2., J. Med. Chem. 24: 184 (1981).

    Article  PubMed  CAS  Google Scholar 

  12. Y. F. Shealy, C. A. Krauth, and W. R. Laster, Jr., 2-Chloroethyl (Methylsulfonyl)methanesulfonate and Related (Methylsulfonyl)methanesulfonates. Antineoplastic Activity In Vivo, J. Med. Chem. 27: 664 (1984).

    Article  PubMed  CAS  Google Scholar 

  13. D. J. Dykes, S. D. Harrison, Jr., M. W. Trader, Y. F. Shealy, and D. P. Griswold, Jr., Antitumor Activity of 2-Chloroethyl (Methanesulfonyl)methanesulfonate (Chlomesone, NSC’38947, SoRI 6155) in Preclinical Solid Tumor and Leukemia and Drug-Resistant Leukemia Models, Proc. Am. Assoc. Cancer Res. 27: 234 (1986).

    Google Scholar 

  14. J. A. Alexander, M. A. Greer, G. P. Wheeler, and Y. F. Shealy, Alkaline Elution Studies of the Effect of SRI 6155, a New Chloroethylating Agent, on Cultured L1210 Cells Using Chlorozotocin and a Reference Compound, Proc. Am. Assoc. Cancer Res. 24: 244 (1983).

    Google Scholar 

  15. N. W. Gibson, J. Plowman, L. C. Erickson, and K. Kohn, Differential Cytotoxicity and DNA Crosslinking in Normal and Transformed Human Cells Exposed to 2-Chloroethyl Methylsulfonylmethanesulfonate (NSC-334947), Proc. Am. Assoc. Cancer Res. 25: 289 (1984).

    Google Scholar 

  16. J. A. Alexander, B. J. Bowdon, G. P. Wheeler, and Y. F. Shealy, DNA Damage in Cultured L1210 Cells by a New Agent-2-Chloroethyl (Methylsulfonyl)methanesulfonate, submitted for publication (1986).

    Google Scholar 

  17. B. J. Bowdon, G. P. Wheeler, L.M. Dansby, and R. Hain, DNA-Protein Cross-linking by Several Alkylating Agents, submitted for publication (1986).

    Google Scholar 

  18. G. A. LePage, L. S. Worth, and A. B. Kimball, Enhancement of the Antitumor Activity of Arabinofuranosyladenine by 2’-Deoxycoformycin, Cancer Res. 35: 1481 (1976).

    Google Scholar 

  19. F. M. Schabel, Jr., M. W. Trader, and W. R. Laster, Jr., Increased Therapeutic Activity of 9-ß-D-Arabinofuranosyladenine (AraA) Against Leukemia P388 and L1210 by an Adenosine Deaminase Inhibitor, Proc. Am. Assoc. Cancer Res. 17: 46 (1976).

    Google Scholar 

  20. J. A. Montgomery, Studies on the Biological Activity of Purine and Pyrimidine Analogs, Med. Res. Rev. 2: 271 (1982).

    Article  PubMed  CAS  Google Scholar 

  21. R. W. Brockman, Y.-C. Cheng, F. M. Schabel, Jr., and J. A. Montgomery, Metabolism and Chemotherapeutic Activity of 9–13-D-Arabinofuranosyl2-fluoroadenine against Murine Leukemia L1210 and Evidence for Its Phosphorylation by Deoxycytidine Kinase, Cancer Res. 40: 3610 (1980).

    PubMed  CAS  Google Scholar 

  22. J. R. Barrueco, D. M. Jacobsen, C.-H. Chang, R. W. Brockman, and F. M. Sirotnak, Higher Levels of Membrane Transport and Phosphorylation of 9-ß-D-Arabinofuranosyl-2-fluoroadenine in L1210 Cells than in Proliferative Epithelium from Mouse Small Intestine, Proc. Am. Assoc. Cancer Res. 27: 300 (1986).

    Google Scholar 

  23. A. Mittleman, R. Ashikari, T. Ahmed, V. Charuvanki, M. Friedland, and Z. Arlin, Phase II Trial of 2-Fluoro-AraAMP (Fludarabine Phosphate) in Patients (Pts) with Advanced Breast Cancer, Proc. Am. Assoc. Cancer Res. 26: 170 (1985).

    Google Scholar 

  24. R. P. Warrell, Jr., E. Berman, T. S. Gee, and S. J. Kempin, Phase I-II Trial of Fludarabine Phosphate in Acute Leukemia, Proc. Am. Assoc. Cancer Res. 26: 179 (1985).

    Google Scholar 

  25. R. W. Brockman, M. W. Trader, and D. P. Griswold, Jr., Increased Sensitivity of Adriamycin-Resistant P388 Murine Leukemia to Chemotherapy with 9–8-D-Arabinofuranosyl-2-fluoroadenine 5’-monophosphate (FaraAMP/NSC 312887), Proc. Am. Assoc. Cancer Res. 27: 297 (1986).

    Google Scholar 

  26. L. L. Bennett, Jr., and R. W. Brockman, unpublished data.

    Google Scholar 

  27. L. L. Bennett, Jr., C.-H. Chang, P. W. Allan, D. J. Adamson, L. M. Rose, R. W. Brockman, J. A. Secrist III, A. Shortnacy, and J. A. Montgomery, Metabolism and Metabolic Effects of Halopurine Nucleosides in Tumor Cells in Culture, Nucleosides and Nucleotides 4: 107 (1985).

    Article  CAS  Google Scholar 

  28. S. H. Lee, L. K. Thomas, F. M. Unger, R. Christian, and A. C. Sartorelli, Comparative Antineoplastic Activity Against P388 Leukemia of 9–8-D-Arabinofuranosyl) (araA) and 9–8-(2’-Azido-2’-deoxy-D-arabinofuranosyl)adenine (Arazide), Int. J. Cancer 27: 703 (1981).

    Article  PubMed  CAS  Google Scholar 

  29. D. A. Carson, D. B. Wasson, and E. Beutler, Antileukemic and Immunosuppressive Activity of 2-Chloro-2’-deoxyadenosine, Proc. Natl. Acad. Sci. U.S.A. 81: 2232 (1984).

    Article  PubMed  Google Scholar 

  30. D. A. Carson, D. B. Wasson, J. Kaye, B. Ullman, D. W. Martin, Jr., R. K. Robins, and J. A. Montgomery, Deoxycytidine Kinase-Mediated Toxicity of Deoxyadenosine Analogs Toward Malignant Human Lymphoblasts In Vitro and Toward Murine L1210 Leukemia In Vivo, Proc. Natl. Acad. Sci. U.S.A. 77: 6865 (1980).

    Article  PubMed  CAS  Google Scholar 

  31. T. M. Savarese, D. L. Dexter, R. E. Parks, Jr., and J. A. Montgomery, 5’-Deoxy-5’-methylthioadenosine Phosphorylase-Il. Role of the Enzyme in the Metabolism and Antineoplastic Action of Adenine-Substituted Analogs of 5’-Deoxy-5’-methylthioadenosine, Biochem. Pharm. 32: 1907 (1983).

    Article  PubMed  CAS  Google Scholar 

  32. T. M. Savarese, R. E. Parks, Jr., J. A. Secrist III, and J. A. Montgomery, Action of Novel 2-Fluoroadenine-substituted Analogs of 5’Deoxy-5’-methylthioadenosine, Proc. Am. Assoc. Cancer Res. 25: 1381 (1984).

    Google Scholar 

  33. T. M. Savarese, G. W. Crabtree, and R. E. Parks, Jr., Reaction of 5’-Deoxyadenosine and Related Analogs with the 5’-Methylthioadenosine Cleaving Enzyme of Sarcoma 180 Cells, A Possible Chemotherapeutic Target, Biochem. Pharm. 28: 2227 (1979).

    Article  PubMed  CAS  Google Scholar 

  34. J. A. Montgomery, A. T. Shortnacy, and J. A. Secrist III, Synthesis and Biological Evaluation of 2-Fluoro-8-azaadenosine and Related Compounds, J. Med. Chem. 26: 1483 (1983).

    Article  PubMed  CAS  Google Scholar 

  35. J. A. Secrist III, A. T. Shortnacy, and J. A. Montgomery, 2-Fluoroformycin and 2-Aminoformycin. Synthesis and Biological Activity, J. Med. Chem. 28: 1740 (1985)

    Article  PubMed  CAS  Google Scholar 

  36. A. C. Sartorelli, J. H. Anderson, and B. A. Booth, Alterations in Purine Nucleotide Biosynthesis Induced by 2-Amino-6-chloropurine, Biochem. Pharm. 17: 37 (1964).

    Article  Google Scholar 

  37. L. L. Bennett, Jr., D. Smithers, L. M. Rose, D. J. Adamson, and R. W. Brockman, Mode of Action of 2-Amino-6-chloro-l-deazapurine, Biochem. Pharm. 33: 261 (1984).

    Article  PubMed  CAS  Google Scholar 

  38. P. K. Chiang, H. H. Richards, and G. L. Cantoni, S-Adenosyl-L-homocysteine Hydrolase: Analogoues of S-Adenosyl-L-bromocysteine as Potential Inhibitors, Mol. Pharmacol. 13: 939 (1977).

    PubMed  CAS  Google Scholar 

  39. L. L. Bennett, Jr., P. W. Allan, and D. L. Hill, Metabolic Studies with Carbocyclic Analogs of Purine Nucleosides, Mol. Pharmacol. 4: 208 (1968).

    PubMed  CAS  Google Scholar 

  40. A. Guranowski, J. A. Montgomery, G. L. Cantoni, and P. K. Chiang, Adenosine Analogues as Substrates and Inhibitors of S-Adenosylhomocysteine Hydrolase, Biochemistry 20: 110 (1981).

    Article  PubMed  CAS  Google Scholar 

  41. P. M. Ueland, Pharmacological and Biochemical Aspects of S-Adenosylhomocysteine and. S-adenosylhomocysteine Hydrolase, Pharmacol. Rev. 34: 223 (1982).

    PubMed  CAS  Google Scholar 

  42. J. A. Montgomery, S. J. Clayton, H. J. Thomas, W. M. Shannon, G. Arnett, A. J. Bodner, I.-K. Kim, G. L. Cantoni, and P. K. Chiang, Carbocyclic Analogue of 3-Deazaadenosine: A Novel Antiviral Agent Using S-Adenosylhomocysteine Hydrolase as a Pharmacological Target, J. Med. Chem. 25: 626 (1982).

    Article  PubMed  CAS  Google Scholar 

  43. E. DeClercq and J. A. Montgomery, Broad-Spectrum Antiviral Activity of the Carbocyclic Analog of 3-Deazaadenosine, Antiviral Res. 3: 17 (1983).

    Article  CAS  Google Scholar 

  44. W. M. Shannon, G. Arnett, L. Westbrook, Y. F. Shealy, C. A. O’Dell, and R. W. Brockman, Evaluation of Carbodine, the Carbocyclic Analog of Cytidine, and Related Carbocyclic Analogs of Pyrimidine Nucleosides for Antiviral Activity Against Human Influenza Type A Viruses, Antimicrobial Agents and Chemother. 20: 769 (1981).

    Article  CAS  Google Scholar 

  45. Y. F. Shealy, C. A. O’Dell, W. M. Shannon, and G. Arnett, Carbocyclic Analogues of 5-Substituted Uracil Nucleosides: Synthesis and Antiviral. Activity, J. Med. Chem. 28: 156 (1983).

    Article  Google Scholar 

  46. Y. F. Shealy, C. A. O’Dell, W. M. Shannon, and G. Arnett, Synthesis and Antiviral. Activity of Carbocyclic Analogues of 2’-Deoxyribofuranoside of 2-Amino-6-substituted-purines and 2-Amino-6-substituted-8-azapurines, J. Med. Chem. 27: 1416 (1984).

    Article  PubMed  CAS  Google Scholar 

  47. W. M. Shannon, personal communication.

    Google Scholar 

  48. R. W. Brockman, S. C. Shaddix, L. M. Rose, R. D. Elliott, and J. A. Montgomery, Activity of 5’-[(Haloacetyl)amino]-5’-deoxy Derivatives of Pyrimidine Nucleosides in Tumor Cells in Culture and In Vivo, Proc. Am. Assoc. Cancer Res. 25: 360 (1984).

    Google Scholar 

  49. J. P. Neenan and W. Rohde, Inhibition of Thymidine Kinase from Walker 256 Carcinoma by Thymidine Analogs, J. Med. Chem. 16: 580 (1973).

    Article  PubMed  CAS  Google Scholar 

  50. Y.-C. Cheng and W. H. Prusoff, Mouse Ascites Sarcoma 180 Deoxythymidine Kinase. General Properties and Inhibition Studies, Biochemistry 13: 1179 (1974).

    Article  PubMed  CAS  Google Scholar 

  51. B. P. Sani, A. Vaid, J. G. Cory, R. W. Brockman, R. D. Elliott, and J. A. Montgomery, 5’-Haloacetamido-5’-deoxythymidines: Novel Inhibitors of Thymidylate Synthase, Proc. Am. Assoc. Cancer Res. 27: 295 (1986).

    Google Scholar 

  52. R. D. Elliott, R. W. Brockman, and. J. A. Montgomery, Reactive 5’-Substituted Thymidine Derivatives as Potential Inhibitors of Nucleotide Biosynthesis, J. Med. Chem., in press (1986).

    Google Scholar 

  53. E. L. White, S. C. Shaddix, R. W. Brockman, and L. L. Bennett, Jr., Comparison of the Actions of 9- -D-Arabinofuranosyl-2-fluoroadenine and 9- -D-Arabinofuranosyladenine on Target Enzymes from Mouse Tumor Cells, Cancer Res. 42: 2260 (1982).

    PubMed  CAS  Google Scholar 

  54. M-C. Huang, K. Hatfield, A. W. Roetker, J. A. Montgomery, and R. L. Blakley, Analogs of 2’-Deoxyadenosine: Facile Enzymatic Preparation and Growth Inhibitory Effects on Human Cell Lines, Biochem. Pharm. 30: 2663 (1981).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Montgomery, J.A. (1987). The Biological Bases for the Design of Anticancer Agents. In: Cory, J.G., Szentivanyi, A. (eds) Cancer Biology and Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9564-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9564-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9566-0

  • Online ISBN: 978-1-4757-9564-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics