From Tumor Relapse Prevention to Tumor Induction Prevention

  • G. Mathé

Abstract

Chemotherapy can induce “complete remissions” or disappearance of perceptible tumor in most leukemias, embryomas and lymphomas, and the intensity of treatment can influence the length of remission, at least of high risk patients (1). It is also possible to completely excise, at least apparently, certain solid tumors. Complete remission, is, however, often less complete than we would like to think. This is true both in leukemias and solid tumors. In leukemia, the malignant clone is hopefully replaced by normal stem cells (2). Sometimes however, a premalignant clone is seen (3). In ALL in complete remission, for instance, cells carrying the common acute lymphoid leukemia antigen (CALLA) cannot be induced to differentiate into plasma cells by B-cell mitogens, in contrast to similar cells from healthy persons (4). In other patients a few frankly malignant cells remain.

Keywords

Acute Myeloid Leukemia Acute Lymphoblastic Leukemia Malignant Lymphoma Minimal Residual Disease Spontaneous Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Misset, F. De Vassal, H. Auclair, C. Canon, J. Gastiaburu, A. Goutner, J. Gouveia, M. Hayat, C. Jasmin, D. Machover, P. Ribaud, L. Schwarzenberg, M. Delgado, T. Dorval, and G. Mathé, Improvement of Results for Poor Risk Childhood Acute Lymphoid Leukemia (ALL): 80% Three Year Actuarial Plateau of First Remissions, Proc. Am. Assoc. Cancer Res. 23: 124 (1982).Google Scholar
  2. 2.
    A. M. Ferraris, L. Canepe, C. Mareni, G. Baule, T. Meloni, E. Salvidio, G. Forteleoni, and G. F. Gaetani, Reexpression of Normal Stem Cells in Erythroleukemia during Remission, Blood 62: 177 (1983).PubMedGoogle Scholar
  3. 3.
    R. Jacobson, M. Temple, J. Singer, W. Raskind, J. Powell, and P. Fialkow, A Clonal Complete Remission in a Patient with Acute Nonlymphocytic Leukemia Originating in a Multipotent Stem Cell, N. Eng. J. Med. 310: 1513 (1984).CrossRefGoogle Scholar
  4. 4.
    J. Bréard, R. Consolini, and G. Mathé, Incapacity of Differentiation in B Cultures of CALLA+ Cells in Acute Lymphoid Leukemia in Remission, submitted for publication (1986).Google Scholar
  5. 5.
    S. Eridani, B. Sawyer, and E. Batten, Haemopoietic Patterns of Acute Leukaemia in Remission: CFU-E and CFU-GM Colony Formation, Acta. Haemat. 70: 11 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    C. Ogier, N. Giannoulis, A. Jacobs, and P. Reizenstein, The Use of Serum Ferritin to Identify Good and Bad Prognosis Groups in Acute Myeloid Leukemia, Hematologica 69: 111 (1984).Google Scholar
  7. 7.
    G. Mathé, J. L. Misset, D. Machover, L. Schwarzenberg, M. Timus, C. Jasmin, P. Ribaud, and M. Musset, Protocoles des Traitements des Leucémies et des Lymphomes: Vers l’Escalade ou vers la Réduction de l’Intensité? Biomed. and Pharmacother. 38: 13 (1984).Google Scholar
  8. 8.
    D. Brinkley and J. L. Haybittle, Long-term Survival of Women with Breast Cancer, Lancet 1: 1118 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    R. J. Monnat, Jr. and L. A. Loeb, Mechanisms of Neoplastic Transformation, Cancer Invest. 1: 175 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    L. Olsson, G. MathT and P. Reizenstein, The Biologic and Immunologic Response to Tumors, in: “Antineoplastic Chemotherapy,” B. Berkharda, K. Karrer, and G. Mathé, eds., Thieme Stratton, New York (1984).Google Scholar
  11. 11.
    J. F. Holland, Breaking the Cure Barrier, J. Clin. Oncol. 1: 75 (1983).PubMedGoogle Scholar
  12. 12.
    K. O. Skarberg, R. Cea, and P. Reizenstein, Cellularity and Cell Proliferation Rates in Human Bone Marrow. II. Studies on Generation Times and Radiothymidine Uptake of Human Red Cell Precursors, Acta Med. Scand. 195: 301 (1974).PubMedCrossRefGoogle Scholar
  13. 13.
    I. Blaszek and G. Mathé, Do Micro-environmental Stromal Factors Play a Similar Role in Primary and/or Metastatic Growth as in Hemopoiesis, Biomed. and Pharmacother., in press (1986).Google Scholar
  14. 14.
    L. Diamond, T. G. O’Brien, and W. M. Baird, Tumor Promoters and the Mechanism of Tumor Promotion, Adv. Cancer Res. 32: 1 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Rossi, G. Bonadonna, P. Valagussa, and U. Veronesi, Multimodal Treatment in Operable Breast Cancer: Five Year Result of the CMFprogramm, Brit. Med. J. 282: 1427 (1981).CrossRefGoogle Scholar
  16. 16.
    G. Mathé, J. L. Misset, R. Plagne, D. Belpomme, J. Guerrin, P. Fumoleau, R. Metz, and M. Delgado, (OncoFrance Comparative Trial Project), Superiority of AVCF (Adriamycin, Vincristine, Cyclophosphamide and 5-Fluorouracil) over CMF (Cyclophosphamide, Methotrexate and 5-Fluorouracil) as Adjuvant Chemotherapy for Breast Cancer. A Phase III Trial of Association OncoFrance, in: “Basic Mechanisms and Clinical Treatments of Tumor Metastasis,” M. Torisu and T. Yoshida, eds., Academic Press, Orlando (1985).Google Scholar
  17. 17.
    A. Howell, H. Bush, W. D. George, J. M. T. Howat, D. Crowther, R. A. Sellwood, R. D. Rubens, J. L. Hayward, R. D. Bulbrook, I. S. Pentiman, and M. Vhaudary, Controlled Trial of Adjuvant Chemotherapy with Cyclophosphamide, Methotrexate and Fluorouacil for Breast Cancer, Lancet 2: 307 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    G. Mathé, M. Eriguchi, and P. Reizenstein, “Cancer Residual Disease and its Adjuvant Chemotherapy and Immunotherapy. Do We Cure Cancer?” Elsevier, Amsterdam, in press (1986).Google Scholar
  19. 19.
    G. Mathé, F. De Vassal, L. Schwarzenberg, M. Delgado, R. Weiner, M. A. Gil, J. Pena-Angulo, D. Belpomme, P. Pouillart, D. Machover, J. L. Misset, J. L. Pico, C. Jasmin, M. Hayat, M. Schneider, A. Cattan, J. L. Amiel, M. Musset, C. Rosenfeld, and P. Ribaud, Preliminary Results of Three Protocols for the Treatment of Acute Lymphoid Leukaemia in Children: Distinction of Two Groups of Patients According to Predictable Prognosis, Med. Ped. Oncol. 4: 17 (1978).CrossRefGoogle Scholar
  20. 20.
    M. F. Sackmann, E. Svarch, S. Pavlovsky, P. Bustelo, J. Guintoli, B. Vergara, G. Garay, M. Eppinger-Helft, R. Kvicala, and E. Dibar, Alternating Pulses of Vincristine-prednisone with Cytarabine-cyclophosphamide versus Vincristine-prednisone in the Maintenance Therapy of Acute Lymphoblastic Leukemia, Cancer Treat. Rep. 68: 581 (1984).Google Scholar
  21. 21.
    R. Champlin, A. Jacobs, J. Zieghelboim, R. Elashoff, and R. P. Gale, Prolonged Survival in Acute Myelogenous Leukemia (AML): Lack of Effect for Maintenance Chemotherapy, Proc. Am. Assoc. Cancer Res. 25: 191 (1984).Google Scholar
  22. 22.
    R. Champlin, A. Jacobs, R. P. Gale, R. Boccia, R. Elashoff, K. Foon, and J. Zieghelboim, Prolonged Survival in Acute Myelogenous Leukaemia without Maintenance Chemotherapy, Lancet 2: 894 (1984).CrossRefGoogle Scholar
  23. 23.
    G. Mathé, M. Gil-Delgado, J. L. Misset, M. Delgado, D. Machover, P. Ribaud, M. Musset, L. Schwarzenberg, and C. Jasmin, Prognostic at 9 Years of 181 Patients with the Different Non-Hodgkin’s Lymphoma (NHL) Types Submitted to the Same Protocol VmCP-Iceberg RadiotherapyImmunotherapy, in: “Second International Conference on Malignant Lymphoma,” Lugano (1984).Google Scholar
  24. 24.
    Medical Research Council’s Working Party on Leukemia in Childhood. Duration of Chemotherapy in Childhood Acute Lymphoblastic Leukemia, Med. Ped. Oncol. 10: 511 (1982).Google Scholar
  25. 25.
    T. A. Lister, W. Gregory, A. Z. S. Rohatiner, B. Birhead, R. Biruls, M. Barnett, H. S. Dhaliwal, M. L. Slevin, and J. A. L. Ames, Short Term Chemotherapy for Acute Myelogeneous Leukaemia, in: “Minimal Residual Disease in Acute Leukemia,” B. Lowenberg and K. A. Hagenbee, eds., Martinus Nijhoff, Boston (1984).Google Scholar
  26. 26.
    E. J. Freireich, E. Gehan, E. Frei III, L. R. Schroeder, I. J. Wolman, R. Anbari, E. O. Burgert, S. D. Mills, D. Pinkel, O. S. Selawry, J. H. Moon, B. R. Gendel, C. L. Spurr, R. Storbs, F. Haurani, B. Hoogstraten, and S. Lee, The Effect of 6-Mercaptopurine in the Duration of Steroid-induced Remissions in Acute Leukemia: A Model for Evaluation of Other Potentially Useful Therapy, Blood 21: 699 (1963).Google Scholar
  27. 27.
    E. Frei III, E. J. Freireich, E. Gehan, D. Pinkel, J. F. Holland, O. Selwary, F. Haurani, C. L. Spurr, D. M. Hayes, G. W. James, H. Roth-berg, D. B. Sodee, R. W. Rundles, L. R. Schroeder, B. Hoogstraten, I. J. Wolman, D. G. Traggis, T. Cooper, B. R. Gendel, F. Ebaugh, and R. Taylor, Studies of Sequential and Combination Antimetabolite Therapy in Acute Leukemia: 6-Mercaptopurin.e and Methotrexate, Blood 18: 431 (1961).Google Scholar
  28. 28.
    D. Pinkel, The Ninth Annual David Karnofsky Lecture. Treatment of Acute Lymphocytic Leukemia, Cancer 43: 1128 (1979).PubMedCrossRefGoogle Scholar
  29. 29.
    M. P. Sullivan, T. Chen, P. G. Dyment, E. Hvizdala, and C. P. Steuber, Equivalence of Intrathecal Chemotherapy and Radiotherapy as Central Nervous System Prophylaxis in Children with Acute Lymphatic Leukemia: A Pediatric Oncology Group Study, Blood 60: 948 (1982).PubMedGoogle Scholar
  30. 30.
    G. Mathé, Immunothérapie Active de la Leucémie’L1210 apres la Greffe Tumorale, Rev. Franc. Et Clin. Biol. 13: 881 (1968).Google Scholar
  31. 31.
    L. Olsson and G. Math A Cytokinetic Analysis of Bacillus Calmette-Guérin Induced Growth Control of Murine Leukemia, Cancer Res. 37: 1743 (1977).PubMedGoogle Scholar
  32. 32.
    R. T. Prehn, Tumor Specific Immunity to Transplanted Dibenz(a,h)antracene Induced Sarcomas, Cancer Res. 20: 1614 (1960).Google Scholar
  33. 33.
    H. B. Hewitt, E. T. Blake, and A. S. Walder, A Critique of the Evidence of Host Defense Against Cancer Based on Personal Studies of 27 Murine Tumors of Spontaneous Origin, Br. J. Cancer 33: 241 (1976).PubMedCrossRefGoogle Scholar
  34. 34.
    L. Olsson and G. Mathé, Antigenic Heterogeneity of Leukemia, Blood Cells 7: 281 (1981).PubMedGoogle Scholar
  35. 35.
    K. E. Hellstrom, I. Hellstrom, and J. P. Brown, Diagnostic and Therapeutic Use of Monoclonal Antibodies to Human Tumor Antigens, Med. Oncol. Tumor Pharmacother. 1: 143 (1984).PubMedGoogle Scholar
  36. 36.
    N. Kuzumaki, H. Minakawa, T. Matsuo, S. Haraguchi, and T. Yoshida, Correlation between Tumor-specific Surface Antigens and src Gene Expression in Rous Sarcoma Virus-induced Rat Tumors, Eur. J. Cancer Clin. Oncol. 19: 401 (1983).PubMedCrossRefGoogle Scholar
  37. 37.
    C. J. O’Hara and G. B. Price, A Monoclonal Antibody Demonstrating Specificity for Drug-resistant Cells, Immunology Lett. 5: 15 (1982).CrossRefGoogle Scholar
  38. 38.
    C. Pauli, F. Vanky, R. Hast, C. Lindemalm, A. M. Uden, and P. Reizen-stein, Cell-mediated Immunity in Human Acute Myeloblastic Leukemia, Cancer Immunol. Immunother. 5: 1 (1978).CrossRefGoogle Scholar
  39. 39.
    L. Olsson, N. Kiger, and G. Mathé, Autoreactive Cells in Cancer-active Immunotherapy: Their Cytotoxic Potential and Genetic Restriction, Transplant Proc. 12: 167 (1980).PubMedGoogle Scholar
  40. 40.
    J. E. Talmadge, L. M. Meyers, D. J. Prieur, and J. R. Starkey, Role of Natural Killer Cells in Tumor Growth and Metastasis: C57B1/6 Normal and Beige Mice, J. Nat. Cancer Inst. 65: 929 (1980).PubMedGoogle Scholar
  41. 41.
    P. Reizenstein, C. Ogier, H. Blomgren, B. Petrini, and J. Wasserman, Cells Responsible for Tumor Surveillance. Effect of Radiotherapy, Chemotherapy and Biological Response Modifiers, in: “Advances in Immunity and Cancer Therapy,” P. K. Ray, ed., Springer Verlag, New York (1986).Google Scholar
  42. 42.
    G. Mathé, “Cancer Active Immunotherapy, Immunoprophylaxis, and Immunorestoration. An Introduction,” Recent Results in Cancer Research (1976).Google Scholar
  43. 43.
    G. Mathé, J. L. Misset, B. Serrou, C. Jeanne, J. Guerrin, R. Plagne, M. Schneider, B. LeMevel, and R. Metz, Immunotherapy versus Chemoimmunotherapy as Adjuvant Treatment of Malignant Melanoma, in: “Basic Mechanisms and Clinical Treatments of Tumor Metastasis,” M. Torisu and T. Yoshida, eds., Academic Press, Orlando (1985).Google Scholar
  44. 44.
    F. Edsmyr, P. L. Esposti, L. Andersson, I. Naslund, and H. Blomgren, Clinical Study on Bestatin and Peplomycin in Treatment of Prostatic Carcinoma, in: “Thirteenth International Congress of Chemotherapy,” S. K. Carter and J. Ultmann, eds. (1983).Google Scholar
  45. 45.
    G. Mathé, J. L. Amiel, L. Schwarzenberg, M. Schneider, A. Cattan, J. R. Schlumberger, M. Hayat, and F. DeVassal, Active Immunotherapy for Acute Lymphoblastic Leukaemia, Lancet 1: 697 (1969).PubMedCrossRefGoogle Scholar
  46. 46.
    S. Pavlovsky, M. F. Sackmann, G. Garay, E. Svarch, J. Braier, M. Lagarde, C. Scaglione, M. Eppinger-Helft, R. Failace, and E. Dibar, Chemoimmunotherapy with Levamisole in Acute Lymphoblastic Leukemia, Cancer 48: 1500 (1981).PubMedCrossRefGoogle Scholar
  47. 47.
    P. Reizenstein, B. Andersson, M. Bjorkholm, G. Brenning, L. Engstedt, G. Gahrton, R. Hast, G. Holm, P. Hornsten, A. Killander, B. Lantz, C. Lindemalm, D. Lockner, B. Lonnqvist, H. Mellstedt, J. Palmblad, C. Paul, B. Simonsson, A. M. Sjogren, A. M. Stalfelt, A. M. Uden, B. Wadman, G. Oberg, and E. Osby, BCG plus Leukemic Cell Therapy in Patients with Acute Nonlymphoblastic Leukemia: Effect in Groups with High and Low Remission Rates, in: “Immunotherapy of Human Cancer,” W. D. Terry and S. A. Rosenberg, eds., Excerpta Medica, New York (1982).Google Scholar
  48. 48.
    K. Ota, A Phase III Study of Bestatin as Adjuvant Immunotherapy of Acute Myeloid Leukemia, in: “Antibiotics in Cancer Treatment,” Volume I, G. Mathé and H. Umezawa, eds., Trends in Antibiotic Research, Tokyo, in press (1986).Google Scholar
  49. 49.
    P. Travade, C. Chastang, A. Auquier, G. Dighiero, H. Piguet, M. Leblay, G. Potron, P. Colona, M. Leporrier, J. Goasguen, F. Oberling, G. Tchernia, P. Boivin, C. Jacquillat, J. Briere, F. Turpin, and J. L. Binet, Resultats Preliminaires du Protocole LLC 76, in: “Biologie des Lecucémies et Hématosarcomes,” Volume I, A. Bernard, L. Boumsell, and F. Demeocq, eds., G. Lachurié, Paris (1983).Google Scholar
  50. 50.
    B. Hoerni, M. Durand, H. Eghbali, G. Hoerni-Simon, and C. Lagarde, Adjuvant BCG-therapy of Non-Hodgkin’s Malignant Lymphomas, in: “Adjuvant Therapy of Cancer III,” S. E. Salmon, and S. E. Jones, eds., Grune and Stratton, New York (1981).Google Scholar
  51. 51.
    S. E. Jones, Chemoimmunotherapy of Malignant Lymphoma, in: Immunotherapy of Human Cancer,“ W. D. Terry and S. A. Rosenberg, eds., Excerpta Medica, New York (1982).Google Scholar
  52. 52.
    D. L. Morton, H. E. Carmack, F. R. Eilber, and K. P. Ramming, Adjuvant Immunotherapy of Malignant Melanoma: Results of a Randomized Trial in Patients with Lymph Node Metastases, in: “Immunotherapy of Human Cancer,” W. D. Terry and S. A. Rosenberg, eds., Excerpta Medica, New York (1982).Google Scholar
  53. 53.
    S. Oka, Bestatin as Adjuvant Therapy for Acute Leukemia, Malignant Melanoma and Other Malignant Diseases, in: “Progress in Cancer Chemoimmunotherapy,” Volume I., G. Mathê and H. Umezawa, eds., Japan Antibiotics Research Association, Tokyo (1984).Google Scholar
  54. 54.
    J. Lacour, F. Lacour, A. Spira, M. Michelson, J. Y. Petit, G. Delage, D. Sarrazin, G. Contesso, and J. Viguier, Adjuvant Treatment with Polyadenyl-polyuridylic Acid in Operable Breast Cancer: Updated Results of a Randomized Trial, Brit. Med. J. 288: 589 (1984).CrossRefGoogle Scholar
  55. 55.
    K. Okamura, Uterus Tumors, in: “Therapeutical Trials in Oncology: Methods, Ethics, Results,” G. Mathé, P. Reizenstein, and M. DiCato, eds., Bioscience Ediprint, Inc., Geneva, in press (1986).Google Scholar
  56. 56.
    T. Ochiai, Gastric Tumors: Immunotherapy, in: Therapeutical Trials in Oncology: Methods, Ethics, Results,“ G. Mathé, P. Reizenstein, and M. DiCato, eds., Bioscience Ediprint, Inc., Geneva, in press (1986).Google Scholar
  57. 57.
    T. Turz, J. Hors, M. Lipinski, J. L. Amiel, and G. Mathé, Comparison of HLA Phenotypes in Long-term Survivors with Acute Lymphoblastic Leukemia Treated with Immunotherapy Versus Chemotherapy, in: “Adjuvant Therapies of Cancer,” G. Mathé, G. Bonadonna, and S. Salmon, eds., Springer Verlag, New York (1982).Google Scholar
  58. 58.
    T. Ochiai, R. Hayashi, and H. Sato, Is HLA-DR4 a Prognostic Factor of Gastric Cancer Patients? in: “Therapeutical Trials in Oncology: Methods, Ethics, Results,” G. Mathé, P. Reizenstein, and M. DiCato, eds., Bioscience Ediprint, Inc., Geneva, in press (1986).Google Scholar
  59. 59.
    G. Mathé, J. L. Amiel, and L. Schwarzenberg, “Bone Marrow Transplantation and Leucocyte Transfusions,” C. C. Thomas, Springfield, (1971).Google Scholar
  60. 60.
    G. Mathé, J. L. Amiel, and J. Niemetz, Greffe de Moelle Osseuse apres Irradiation Totale chez des Souris Leucemiques, Suivie de l’Administration d’un Antimitotique pour Reduire la Frequence du Syndrome Secondaire et Ajouter a l’Effet Antileucemique, C. R. Acad. Sci. Paris 254: 3602 (1962).Google Scholar
  61. 61.
    G. Mah and J. L. Amiel, Reduction de la Concentration Plasmatique du Virus Leucemigene de Charlotte Friend par Immunotherapie Adoptive (Greffe de Moelle Osseuse Allogenique), C. R. Acad. Sci. Paris 259: 4408 (1964).Google Scholar
  62. 62.
    P. L. Weiden, N. Flournoy, E. D. Thomas, R. Prentice, A. Fefer, C. D. Buckner, and R. Storb, Antileukemic Effect of Graft-versus-Host Disease in Human Recipients of Allogeneic-marrow Grafts, N. Eng. J. Med. 300: 1068 (1979).CrossRefGoogle Scholar
  63. 63.
    T. Takvorian, S. Sallan, G. Canellos, S. Schlossman, and J. Ritz, Clinical Use of Monoclonal Antibody (McAb) in the Treatment of Leukemia, in: “Twelfth International Congress of Internal Medicine” (1984).Google Scholar
  64. 64.
    S. Orbach-Arbouys and M. Castes, Augmentation of Immune Responses after Methotrexate Administration, Immunology 36: 265 (1979).PubMedGoogle Scholar
  65. 65.
    S. Orbach-Arbouys, A. Andrade Mena, and M. Berardet, and G. Mathé, Aclacinomycin Inhibits Suppressor Cells In Vivo and In Vitro, Behring Inst. Mitt. 75: 258 (1984).Google Scholar
  66. 66.
    F. Levi, C. Canon, J. P. Blum, A. Reinberg, and G. Mathé, Large Amplitude Circadian Rhythm in Helper-suppressor Ratio of Peripheral Blood Lymphocytes, Lancet 2: 462 (1983).PubMedCrossRefGoogle Scholar
  67. 67.
    M. Eriguchi and G. Mathé, Curve Models for Comparative Phase III Trials: Heterogeneity of the Population, Oncology, in press (1986).Google Scholar
  68. 68.
    E. Obsy, P. Reizenstein, G. Mathé, M. Peetermans, C. M. Blanc, C. H. Cauchie, D. Fiere, and M. Jaubert, A Phase II Study of Alternating Combination Chemotherapy in 55 Myeloma Patients. A Comparison with Non-alternating Combination Chemotherapy and Treatment with a Single Cytostatic, Anticancer Res. 339 (1985).Google Scholar
  69. 69.
    A. J. Garvin, R. M. Simon, C. K. Obsorne, J. Merrill, R. C. Young, and C. W. Berard, An Autopsy Study of Histologic Progression in Non-Hodgkin’s Lymphoma. 192 Cases from the National Cancer Institute, Cancer 52: 393 (1983).PubMedCrossRefGoogle Scholar
  70. 70.
    E. D. Thomas, Bone Marrow Transplantation, Fourth Mediterranean Congress of Chemotherapy 4 (Supp. 2): 808 (1985).Google Scholar
  71. 71.
    H. J. Rothing, H. P. Kramer, and H. H. Sedlacek, Development of New Drugs for the Treatment of Leukemia, in: “Seventeenth International Congress of Internal Medicine,” (1984).Google Scholar
  72. 72.
    L. Olsson, I. Florentin, N. Kiger, and G. Mathé, Cellular and Humoral Immunity to Leukemia in BCG-induced Controlled Growth of a Murine Leukemia, J. Nat. Cancer Inst. 59: 1297 (1977).PubMedGoogle Scholar
  73. 73.
    M. Bruley-Rosset, I. Florentin, N. Kiger, M. Davigny, and G. Mathé, Effects of BCG and Levamisole on Immune Responses in Young Adult and Aged-immunodepressed Mice, Cancer Treat. Rep. 62: 1641 (1978).PubMedGoogle Scholar
  74. 74.
    I. Florentin, N. Kiger, M. Bruley-Rosset, J. Schultz, and G. Mathé, Effect of Seven Immunomodulators on Different Types of Immune Responses in Mice, in: “ Human Lymphocyte Differentiation: Its Application to Cancer,” B. Serrou and R. Rosenfeld, eds., Elsevier, Amsterdam (1978).Google Scholar
  75. 75.
    I. Florentin, M. Bruley-Rosset, M. Davigny, and G. Mathé, Comparison of the Effects of BCG and a Preparation of Heat-killed Pseudomonas aeruginosa on the Immune Responses in Mice, in: “The Pharmacology of Immunoregulation,” G. H. Werner and F. Floch, eds., Academic Press, New York (1978).Google Scholar
  76. 76.
    I. Florentin, M. Bruley-Rosset, N. Kiger, J. L. Imbach, F. Winternitz, and G. Mathé, In Vivo Immunostimulation by Tuftsin, Cancer Immunol. Immunother. 5:211 (1978).CrossRefGoogle Scholar
  77. 77.
    M. Bruley-Rosset, I. Florentin, N. Kiger, J. Schultz, M. Davigny, and G. Mathé, Age-related Changes of the Immune Response and Immunorestoration by Stimulating Agents, in: “The Immune System: Functions and Therapy of Dysfunction,” G. Doria and A. Eshkol, eds., Academic Press, New York (1980).Google Scholar
  78. 78.
    M. Bruley-Rosset, T. Hercend, J. Martinez, H. Rappaport, and G. Mathé, Prevention of Spontaneous Tumors of Aged Mice by Immunopharmacologic Manipulation: Study of Immune Antitumor Mechanism, J. Nat. Cancer Inst. 66: 1113 (1981).PubMedGoogle Scholar
  79. 79.
    M. Bruley-Rosset and H. Rappaport, Natural Killer Cell Activity and Spontaneous Development of Lymphoma. Effects of Single and Multiple Injections of Interferon into Young and Aged C57B1/6 Mice, Int. J. Cancer 31: 381 (1983).PubMedCrossRefGoogle Scholar
  80. 80.
    I. Florentin, J. Martinez, J. Maral, M. Pelletier, V. Chung, M. Roch-Arveiller, M. Bruley-Rosset, J. P. Giroud, F. Winternitz, and G. Mathé, Immunopharmacological Properties of Tuftsin and of Some Analogues, Ann. N. Y. Acad. Sci. 419: 177 (1983).PubMedCrossRefGoogle Scholar
  81. 81.
    M. Bruley-Rosset, I. Florentin, H. Kiger, J. Schultz, and G. Mathé, Restoration of Impaired Immune Functions of Aged Animals by Chronic Bestatin Treatment, Immunology 38: 75 (1979).PubMedGoogle Scholar
  82. 82.
    M. Bruley-Rosset, I. Florentin, N. Kiger, J. I. Schultz, and G. Mathé, Correction of Immunodeficiency in Aged Mice by Levamisole and Bestatin Administration, in: “Cancer Chemo-and Immunopharmacology. 2. Immunopharmacology, Relations and General Problems,” G. Mathé and F. Maggia, eds., Springer Verlag, New York (1980).Google Scholar
  83. 83.
    M. Bruley-Rosset, T. Hercend, H. Rappaport, and G. Mathé, Immunorestorative Capacity of Tuftsin After Long Term Administration to Aging Mice, Ann. N. Y. Acad. Sci. 419: 242 (1983).PubMedCrossRefGoogle Scholar
  84. 84.
    S. Harshman and V. A Najjar, The Binding of Autologous Gamma-globulin with Isohemmagglutinin Activity to Human Red Blood Cells, Biochem. Biophys. Res. Comm. 11: 411 (1963).PubMedCrossRefGoogle Scholar
  85. 85.
    B. V. Fidalgo and V. A. Najjar, The Physiological Role of the Lymphoid System. III. Leucophilic Gamma-globulin and the Phagocytic Activity of the Polymorphonuclear Leucocyte, Proc. Natl. Acad. Sci. U.S.A. 57: 957 (1967).PubMedCrossRefGoogle Scholar
  86. 86.
    B. V. Fidalgo and V. A. Najjar, The Physiological Role of the Lymphoid System. VI. The Stimulatory Effect of Leucophilic Gamma-globulin (Leucokinin) on the Phagocytic Activity of Human Polymorphonuclear Leucocytes, Biochemistry 6: 3385 (1967).Google Scholar
  87. 87.
    V. A. Najjar and K. Nishioka, Tuftsin: A Physiological Phagocytosisstimulating Peptide, Nature 228: 672 (1970).PubMedCrossRefGoogle Scholar
  88. 88.
    K. Nishioka, A. Constantopoulos, P. Satoh, and V. A. Najjar, The Characteristics, Isolation and Synthesis of the Phagocytosis Stimulating Peptide Tuftsin, Biochem. Biophys. Res. Comm. 47: 172 (1972).PubMedCrossRefGoogle Scholar
  89. 89.
    K. Nishioka, A. Constantopoulos, P. S. Satoh, W. M. Mitchell, and V. A. Najjar, Characteristics and Isolation of the Phagocytosis-stimulating Peptide Tuftsin, Biochim. Biophys. Acta 310: 217 (1973).PubMedCrossRefGoogle Scholar
  90. 90.
    K. Nishioka, P. S. Satoh, A. Constantopoulos, and V. A. Najjar, The Chemical Synthesis of the Phagocytosis Tetrapeptide Tuftsin (Thr-LysPro-Arg) and its Biological Properties, Biochim. Biophys. Acta 310: 230 (1973).PubMedCrossRefGoogle Scholar
  91. 91.
    V. A. Najjar and A. Constantopoulos, A New Phagocytosis-stimulating Tetrapeptide Hormone, Tuftsin and Its Role in Disease, J. Reticuloendoth. Soc. 12: 197 (1972).Google Scholar
  92. 92.
    A. Constantopoulos, V. A. Najjar, and J. W. Smith, Tuftsin Deficiency: A New Syndrome with Defective Phagocytosis, J. Pediat. 80: 564 (1972).PubMedCrossRefGoogle Scholar
  93. 93.
    G. F. Babcock, A. A. Amoscato, and K. Nishioka, Effect of Tuftsin on the Migration, Chemotaxis and Differentiation of Macrophages and Granulocytes, Ann. N. Y. Acad. Sci. 419: 64 (1983).PubMedCrossRefGoogle Scholar
  94. 94.
    V. A. Najjar, Tuftsin: A Natural Activator of Phagocyte Cells, An Overview, Ann. N. Y. Acad. Sci. 419: 1 (1983).PubMedCrossRefGoogle Scholar
  95. 95.
    H. Umezawa, Small Molecular Microbial Products Enhancing Immune Response, Antibiot. Chemother. 24: 9 (1978).PubMedGoogle Scholar
  96. 96.
    H. Umezawa, Advances in Microbial Secondary Metabolites: Enzyme Inhibitors, Abstracts, Amer. Chem. Soc. Meet. (1976).Google Scholar
  97. 97.
    V. Botbol and O. A. Scornick, Intermediates in the Degradation of Abnormal Globin. Bestatin Permits the Accumulation of the Same Peptidase in Cell-Free Extracts as in Intact Reticulocytes, J. Biol. Chem. 254: 11254 (1979).PubMedGoogle Scholar
  98. 98.
    H. Suda, T. Takita, T. Aoyagi, and H. Umezawa, The Structure of Bestatin, J. Antibiot. 29: 100 (1976).PubMedCrossRefGoogle Scholar
  99. 99.
    H. Nakamura, H. Suda, T. Takita, T. Aoyagi, H. Umezawa, and Y. Iitaka, X-ray Structure Determination of (2S,3R)-3-amino-2-hydroxy-4-phenylbutanoic Acid, a New Amino Acid Component of Bestatin, J. Antibiot. 29: 102 (1976).PubMedCrossRefGoogle Scholar
  100. 100.
    H. Suda, T. Takita, T. Aoyagi, and H. Umezawa, The Chemical Synthesis of Bestatin, J. Antibiot. 29: 600 (1976).PubMedCrossRefGoogle Scholar
  101. 101.
    J. Arendes, Activation of DNA Metabolism in T-cells by Bestatin, Arch. Pharmacol. 311: 7 (1980).Google Scholar
  102. 102.
    W.E.G. Mullar, R. K. Zahn, J. Arendes, N. Munsch, and H. Umezawa, Activation of DNA Metabolism in T-cells by Bestatin, Biochem. Pharm. 28: 3131 (1979).CrossRefGoogle Scholar
  103. 103.
    P. Libby and A. L. Goldberg, Effects of Chymostatin and Other Proteinase Inhibitors on Protein Breakdown and Proteolytic Activities in Muscle, Biochem. J. Cell. Aspects 188: 213 (1980).Google Scholar
  104. 104.
    H. Umezawa, M. Ishizuka, T. Aoyagi, and T. Takeuchi, Enhancement of Delayed-type Hypersensitivity by Bestatin, An Inhibitor of Amino-peptidase B and Leucine Aminopeptidase, J. Antibiot. 29: 857 (1976).PubMedCrossRefGoogle Scholar
  105. 105.
    M. Saito, T. Aoyagi, H. Umezawa, and Y. Nagai, Bestatin, a New Specific Inhibitor of Aminopeptidases, Enhances Activation of Small Lymphocytes by Concanavalin A, Biochem. Biophys. Res. Commun. 76: 526 (1977).CrossRefGoogle Scholar
  106. 106.
    M. Saito, K. Takegoshi, T. Aoyagi, H. Umezawa, and Y. Nagai, Stimulatory Effect of Bestatin, a New Specific Inhibitor of Aminopeptidases, on the Blastogenesis of Guinea Pig Lymphocytes, Cell. Immunol. 40: 247 (1978).PubMedCrossRefGoogle Scholar
  107. 107.
    M. Ishizuka, T. Masuda, N. Kanbayashi, S. Fukasawa, T. Takeuchi, T. Aoyagi, and H. Umezawa, Effect of Bestatin on Mouse Immune System and Experimental Murine Tumors, J. Antibiot. 33: 642 (1980).PubMedCrossRefGoogle Scholar
  108. 108.
    M. Ishizuka, H. Sato, Y. Sugiyama, T. Takeuchi, and H. Umezawa, Mitogenic Effects of Bestatin on Lymphocytes, J. Antibiot. 33: 653 (1980).PubMedCrossRefGoogle Scholar
  109. 109.
    P. S. Satoh, A. Constantopoulos, K. Nishioka, and V. A. Najjar, Tuftsin, Threonyl-lysyl-prolyl-arginine, The Phagocytosis Stimulating Messenger of the Carrier Cytophilic Gamma-globulin Leukokinin, in: “Chemistry and Biology of Peptides,” J. Meinhoffer, ed., Ann Arbor Science Publishing, Ann Arbor (1972).Google Scholar
  110. 110.
    R. Nishizawa, T. Saino, T. Takita, H. Suda, T. Aoyagi, and H. Umezawa, Synthesis and Structure-Activity Relationship of Bestatin Analogues, Inhibitors of Aminopeptidases, B. J. Med. Chem. 20: 510 (1977).CrossRefGoogle Scholar
  111. 111.
    G. Mathé and J. L. Misset, Clinical Immunorestoration with Bestatin and Zinc Gluconate, Biomed. Pharmacother., in press (1986).Google Scholar
  112. 112.
    E. L. Wynder, P. Hoffman, and G. B. Gori, eds., “Proceedings of Third World Conference on Smoking and Health,” Volume 1, DHEW, No. 76. 1221 NIH, Government Printing Office, Washington (1975).Google Scholar
  113. 113.
    H. Mayer, W. Bollag, R. Hanna, and R. Ruegg, Retinoids, a New Class of Compounds with Prophylactic and Therapeutic Activities in Oncology and Dermatology, Experientia 14: 1105 (1978).CrossRefGoogle Scholar
  114. 114.
    O. Auerbach, A. P. Stout, E. C. Hammond, and L. Garfinkel, Changes in Bronchial Epithelium in Relation to Cigarette Smoking and in Relation to Lung Cancer, N. Eng. J. Med. 265: 253 (1961).CrossRefGoogle Scholar
  115. 115.
    O. Auerbach, A. P. Stout, E. C. Hammond, and L. Garfinkel, Changes in Relation to Sex, Age, Residence, Smoking, and Pneumonia, N. Eng. J. Med. 267: 111 (1962).CrossRefGoogle Scholar
  116. 116.
    O. Auerbach, A. P. Stout, E. C. Hammond, and L. Garfinkel, Bronchial Epithelium in Former Smokers, N. Eng. J. Med. 267: 119 (1962).CrossRefGoogle Scholar
  117. 117.
    W. Bollag, Therapeutic Effect of Aromatic Retinoid Acid Analog on Chemically Induced Skin Papillomas and Carcinomas in Mice, Eur. J. Cancer 10: 731 (1974).PubMedGoogle Scholar
  118. 118.
    M. Bruley-Rosset, T. Hercend, J. Martinez, H. Rappaport, and G. Mathé, Prevention of Spontaneous Tumors of Aged Mice by Immunopharmacological Manipulation: Study of Immune Antitumor Mechanisms, J. Nat. Cancer Inst. 66: 1113 (1981).PubMedGoogle Scholar
  119. 119.
    G. H. Clamon, M. B. Sporn, J. M. Smith, and U. Saffiotti, Alpha-and Beta-retinyl Acetate Reverse Metaplasias of Vitamin A Deficiency in Hamster Trachea in Organ Culture, Nature 250: 64 (1974).PubMedCrossRefGoogle Scholar
  120. 120.
    G. Mathé and A. Cattan, Cancérologie a’ l’Usage du Praticien et de l’Etudiant, “Expansion Scientifique Française, Paris” (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • G. Mathé
    • 1
  1. 1.Institut de Cancérologie et d’ImmunogénétiqueUniversite Paris-SudVillejuifFrance

Personalised recommendations