Application of Proton Nuclear Magnetic Resonance to Tumor Biology

  • Paul G. Braunschweiger
  • Marvin A. Rich


The application of nuclear magnetic resonance (NMR) to biomedical research is an excellent example of how a physical technique may be employed to examine old problems from a completely new viewpoint. Although NMR has been widely used by biochemists to elucidate molecular structures and reaction kinetics, the application of NMR to biomedical research has led to noninvasive techniques for metabolite identification and quantification, assessment of tissue bioenergetics in vivo, and for the evaluation of the spatial distribution of metabolites in tissues. New, high field strength, large bore NMR instruments have promoted laboratory and clinical studies to assess how disease and therapy alter the distributionof biologically relevant nuclides such as 1H, 13C, 23Na and 31P. Although the application of in vivo 23Na and 31P NMR has been limited to low depth in vivo spectroscopy and low resolution imaging, proton (1H) NMR has become widely used for investigations of tissue water and to produce detailed tomographic images which reflect the spatial distribution of tissue water and the distribution of proton relaxation.


Nuclear Magnetic Resonance Dexamethasone Treatment Extracellular Water Total Water Content M5076 Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. C. Lauterbur, Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance, Nature 242: 190 (1973).CrossRefGoogle Scholar
  2. 2.
    A. Haase, J. Frahm, W. Hanicke, and D. Matthaei, 1H-NMR Chemical Shift: Selective (CHESS) Imaging, Phys. Med. Biol. 30: 341 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    F. W. Wehrli, A. Shemakawa, J. R. MacFall, L. Axel, and W. Perman, MR Imaging of Venous and Arterial Flow by a Selective Saturation Recovery Spin Echo (SSRSE) Method, J. Comp. Asst. Tomog. 9: 537 (1985).CrossRefGoogle Scholar
  4. 4.
    P. T. Beall, B. R. Brinkley, D. C. Chang, and C. F. Hazelwood, Micro-tubule Complexes Correlated with Growth Rate and Water Proton Relaxation Times in Human Breast Cancer Cells, Cancer Res. 42: 4124 (1982).PubMedGoogle Scholar
  5. 5.
    P. T. Beall, C. F. Hazelwood, and P. N. Rao, Nuclear Magnetic Resonance Patterns of Intracellular Water as a Function of HeLa Cell Cycle, Science 192: 904 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    D. P. Hollis, L. A. Saryan, J. S. Economou, J. C. Eggleston, J. L. Czeisler, and H. P. Morris, Nuclear Magnetic Resonance Studies of Cancer. V. Appearance and Development of a Tumor Systemic Effect in Serum and Tissues, J. Nat. Cancer Inst. 53: 807 (1974).PubMedGoogle Scholar
  7. 7.
    L. A. Saryan, D. P. Hollis, J. S. Economou, and J. C. Eggleston, Nuclear Magnetic Resonance Studies of Cancer. IV. Correlation of Water Content with Tissue Relaxation Times, J. Nat. Cancer Inst. 52: 599 (1974).PubMedGoogle Scholar
  8. 8.
    P. A. Bottomley, T. H. Fogler, R. E. Argersinger, and L. M. Pfeifer, A Review of Normal Tissue Hydrogen NMR Relaxation Mechanisms from 1–100 MHz: Dependence on Tissue Type, NMR Frequency, Temperature, Species, Excision, and Age, Med. Phys. 11: 425 (1984).Google Scholar
  9. 9.
    H.-I. Peterson, Vascular and Extravascular Spaces in Tumors: Tumor Vascular Permeability, in: “Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Bloodflow of Experimental and Human Tumors,” H.-I. Peterson, ed., C.R.C. Press, Boca Raton (1979).Google Scholar
  10. 10.
    R. K. Reed and H. Wiig, Interstitial Albumin Mass and Transcapillary Exteravasation Rate of Albumin in DMBA-induced Rat Mammary Tumors, Scand. J. Clin. Lab. Invest. 43: 503 (1983).CrossRefGoogle Scholar
  11. 11.
    P. G. Braunschweiger, H. L. Ting, and L. M. Schiffer, Receptor Dependent Antiproliferative Effects of Corticosteroids in RIF-1 Tumors and Implications for Sequential Therapy, Cancer. Res. 42: 1686 (1982).PubMedGoogle Scholar
  12. 12.
    P. G. Braunschweiger and L. M. Schiffer, The Effect of Dexamethasone (Dex) on Water Spaces and Vascular Function in Solid Tumor Models, Proc. Am. Assoc. Cancer Res. 26: 43 (1985).Google Scholar
  13. 13.
    H.-J. Weinmann, R. C. Brasch, W. R. Press, and G. E. Wesby, Characteristics of Gadolinium-DTPA Complex: A Potential NMR Contract Agent, Am. J. Roentgenology 142: 619 (1984).CrossRefGoogle Scholar
  14. 14.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193: 265 (1951).PubMedGoogle Scholar
  15. 15.
    L. M. Schiffer, J. H. Caskey, R. J. Kovachy, and J. D. Reith, Proton NMR Identification of Areas of Apparent Localized Tumor Necrosis after Chemotherapy, Proc. Am. Soc. Cliii. Onc. 4: 19 (1985).Google Scholar
  16. 16.
    P. G. Braunschweiger and L. M. Schiffer, H-NMR Relaxation Times in Solid Tumors after Dexamethasone, Proc. Cell Kinetic Soc., Cell Tissue Kinet., in press (1986).Google Scholar
  17. 17.
    Y. Mauss, D. Grucker, D. Fornasiero, and J. Chambron, NMR Compartmentalization of Free Water in the Perfused Rat Heart, Magn. Reson. Med. 2: 187 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    Y. 0yanagui, Steroid-like Anti-inflammatory Effect of Superoxide Desmutase in Serotonin-, Histamine-, and Kinin-induced Edemata of Mice: Existence of Vascular Permeability Regulating Proteins(s), Biochem. Pharm. 30: 1791 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    Y. Zigra, Physiological Regulation of Vascular Permeability by Endogenous Glucocorticoids and Active Oxygen, Inflammation 7: 81 (1983).CrossRefGoogle Scholar
  20. 20.
    S. H. Koenig and W. H. Schillinger, Nuclear Magnetic Relaxation Dispersion in Protein Solutions. I. Apotransferrin, J. Biol. Chem. 244: 3283 (1969).PubMedGoogle Scholar
  21. 21.
    P. T. Beall, S. R. Amtey, and S. R. Kasturi, “NMR Data Handbook for Biomedical Applications,” Pergamon Press, New York (1984).Google Scholar
  22. 22.
    P. G. raunschweiger, Gadolinium-DTPA-Dimethyl Glucamine Modification of H-NMR Relaxation Times in Solid Tumors: Time and Dose Response Studies, Proc. Am. Assoc. Cancer Res., in press (1986).Google Scholar
  23. 23.
    P. G. Braunschweiger, H. L. Ting, and L. M. Schiffer, The Correlation Between Glucocorticoid Receptor Content and the Antiproliferative Effects of Dexamethasone in Experimental Solid Tumors, Cancer Res. 43: 4757 (1983).PubMedGoogle Scholar
  24. 24.
    W. R. Sloan, W. D. W. Heston, and D. S. Coffey, New Model for Studying the Effects of Cancer Chemotherapeutic Agents on the Growth of the Prostate Gland, Cancer Chemother. Repts. 59: 185 (1975).Google Scholar
  25. 25.
    L. S. Perron and D. P. Griswold, Studies on the Kinetics of Growth and Regression of 7–12 Dimethylbenz()anthracene Induced Mammary Adenocarcinoma in Sprague-Dawley Rats, Cancer Res. 30: 813 (1970).Google Scholar
  26. 26.
    P. G. Braunschweiger, L. M. Glode, J. Caskey, T. Nelson, and C. Bartlett, H-NMR Relaxation Times in Human Prostate Cancer (Pca) and Normal Rat Prostate after Androgen Depletion and Reconstitution, Proc. Am. Soc. Clin. Onc., in press (1986).Google Scholar
  27. 27.
    P. G. Braunschweiger and L. M. Schiffer, The Effect of cis-Platinol (C-DDP) on Cell Proliferation in Solid Tumor Models, Proc. Cell. Kinetic Soc., Cell. Tissue Kinet. 17: 674 (1984).Google Scholar
  28. 28.
    D. A. Feinberg, L. A. Crooks, L. Kaufman, M. Brant-Zawadzk.i, J. P. Posin, M. Arakawa, J. C. Watts, and J. Hoenniger, Magnetic Resonance Imaging Performance Comparison of Sodium and Hydrogen, Radiol. 156: 133 (1985).Google Scholar
  29. 29.
    L. C. Clark, J. L. Ackerman, S. R. Thomas, R. W. Millard, R. E. Hoffman, R. G. Pratt, H. Ragel-Cole, R. A. Kinsey, and R. Janakramen, Per-fluorinated Organiclyiquids and Emulsions as Biocompatible NMR Imaging Agents for F and Dissolved Oxygen, Adv. Exptl. Med. Biol. 180: 835 (1984).CrossRefGoogle Scholar
  30. 30.
    W. T. Evanochko, T. T. Sakui, T. C. Ng, N. R. Krishna, H. D. Kim, R. B. Seidler, V. K. Chanta, R. W. Brockman, L. M. Schiffer, P. G. Braunschweiger, and J. D. Glickman, NMR Study of In Vivo RIF-1 TITorsi Analylis of Perchloric Acid Extracts and Identification of P, H and C Resonances, Biochim. Biophys. Acta 805: 104 (1984).PubMedCrossRefGoogle Scholar
  31. 31.
    J. D. Glickson, In Vivo NMR Spectroscopy of Tumors, in: “NMR Spectroscopy of Cells and Organisms,” R. K. Gupta, ed., C.R.C. Press, Boca Raton, in press (1986).Google Scholar
  32. 32.
    W. T. Evanochko, T. C. Ng, M. B. Lilly, A.3i. Lawson, T. H. Corbell, J. R. Durant, and J. D. Gligkson, In Vivo P NMR Study of. the Metabolism of Murine Mammary C Adenocarcinoma and its Response to Chemotherapy, x-Irradiation and Hyperthermia, Proc. Natl. Acad. Sci. U.S.A. 80:334 (1983).Google Scholar
  33. 33.
    B. Ross, V. Marshall, M. Smith, S. Bartlett, and D. Frsgman, Monitoring Response to Chemotherapy of Intact Human Tumors by P-Nuclear Magnetic Resonance, Lancet 1: 641 (1984).PubMedCrossRefGoogle Scholar
  34. 34.
    S. Naruse, K. Hirakawa, Y. Horikawa, C. Tanaka, T. Hifychi, S. Ueda, H. Nishikawa, and H. Watari, Measurements of In Vivo P NMR Spectra in Neuroectodermal Tumors for the Evaluation of the Effects of Chemotherapy, Cancer Res. 45: 2429 (1985).PubMedGoogle Scholar
  35. 35.
    L. M. Schiffer, P. G. Braunschweiger, J. D. Glickman, W. T. Evanochko, and T. C. Ng, Preliminary Obsertions of the Correlation of Proliferative Phenomena with In Vivo P-NMR Spectroscopy after Tumor Chemotherapy, Ann. N.Y. Acad. Sci., in press (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Paul G. Braunschweiger
    • 1
  • Marvin A. Rich
    • 1
  1. 1.AMC Cancer Research CenterDenverUSA

Personalised recommendations