A Comparison of the Changes in Carbohydrate, Fat, and Protein Metabolism Occurring with Malignant and Benign Tumors and the Impact of Nutritional Support

  • Antonio C. L. Campos
  • Dan L. Waitzberg
  • Michael M. Meguid
Chapter
Part of the Human Nutrition book series (HUNU, volume 7)

Abstract

Cachexia is a common feature of advanced malignancy. In many patients, anorexia or alterations in gastrointestinal function seem to contribute to the observed weight loss. However, weight loss occurs in some patients even without an obvious cause, which is widely believed to be due to increased energy expenditure associated with the presence of a neoplasm. Although this concept has not been confirmed in a number of studies (Knox et al., 1983; Hansell et al., 1986), Lundholm et al. (1981a) suggested that anorexia is the primary event, based on data showing that food intake in cancer-bearing patients relative to matched controls is diminished. Data from animal experiments and pair-fed studies indicate that malignant tumor-or host-secreted factors may play a major role in weight loss by interfering with the normal carbohydrate, fat, and protein metabolism (Burt et al., 1983a; Devereux et al., 1985; Brennan, 1977; Heber et al., 1982; Norton et al., 1981; Pain et al., 1984; Warren et al.,1987). The changes in host metabolism induced by malignant tumors are in contrast with the effects of benign tumors. Although benign tumors demonstrate similar significant growth, they appear to cause little systemic disturbance unless endocrinologically active or anatomically strategically sited.

Keywords

Total Parenteral Nutrition Cancer Cachexia Rest Energy Expenditure Ehrlich Ascites Tumor Cell Body Cell Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbeit, J. M., Lees, D. E., Corsey, R., and Brennan, M. F., 1984, Resting energy expenditure in controls and cancer patients with localized and diffuse disease, Ann. Surg. 199: 292–298.CrossRefGoogle Scholar
  2. Bennegard, K., Eden, E., Ekman, L., Scherstein, T., and Lundholm, K., 1982, Metabolic balance across the leg in weight-losing cancer patients compared to depleted patients without cancer, Cancer Res. 42: 4293–4299.Google Scholar
  3. Bennegard, K., Eden, E., Ekman, L., Scherstein, T., and Lundholm, K., 1983, Metabolic response of whole body and peripheral tissues to enteral nutrition in weight-losing cancer and non-cancer patients, Gastroenterology 85: 92–99.Google Scholar
  4. Beutler, B., and Cerami, A., 1986, Cachectin and tumor necrosis factor as two sides of the same biological coin, Nature 326: 584–588.CrossRefGoogle Scholar
  5. Beutler, B., and Cerami, A., 1987, Cachectin: More than a tumor necrosis factor, New. Engl. J. Med. 316: 379–385.CrossRefGoogle Scholar
  6. Bevilacqua, R. G., Gomes, M. C. C., Bevilacqua, L. R., Margarido, N. F., Waitzberg, D. L., and Lima, G. L., 1984, Efeitos da utilizacao da dieta hiper lipidica sobre o desenvolvimento tumoral. Estudo experimental corn o carcinossarcoma de Walker 256, Rev. Paul. Med. 102: 249–255.Google Scholar
  7. Block, J. B., 1974, Lactic acidosis in malignancy and observations on its possible pathogenesis, Ann. NYAcad. Sci. 230:94–102.Google Scholar
  8. Bozzetti, F., Pangnomi, A. M., and DelVecchio, M., 1980, Excessive caloric expenditure as a cause of malnutrition in patients with cancer, Surg. Gynecol. Obstet. 150: 229–234.Google Scholar
  9. Bozzetti, F., Ammatuna, M., Migliavacca, S., Banalumi, M. G., Facchetti, G., Pupar, A., and Terno, G., 1987, Total parenteral nutrition prevents further nutritional deterioration in patients with cancer cachexia, Ann. Surg. 205: 138–143.CrossRefGoogle Scholar
  10. Brennan, M. F., 1977, Uncomplicated starvation versus cancer cachexia, Cancer Res. 37: 2359.Google Scholar
  11. Brennan, M. F., 1981, Total parenteral nutrition in the cancer patient, N. Engl. J. Med. 305: 375–382.CrossRefGoogle Scholar
  12. Brooks, S. L., Neville, A. M., Rothwell, N. J., Stock, M. J., and Wilson, S., 1981, Sympathetic activation of brown-adipose tissue thermogenesis in cachexia, Biosci. Rep. 1: 509–517.CrossRefGoogle Scholar
  13. Brown, G. W., Jr., Katz, J., and Chaikoff, I. L., 1956, The oxidative metabolic pattern of mouse hepatoma C 954 as studied with C14-labeled acetate, propionate, octanoate and glucose, Cancer Res. 16: 509–519.Google Scholar
  14. Burke, M., Bryson, E. I., and Kark, A. E., 1980, Dietary intakes, resting metabolic rates, and body composition in benign and malignant gastrointestinal disease, Br. Med. J. 280: 211–215.CrossRefGoogle Scholar
  15. Burt, M. E., Gorschboth, C., and Brennan, M. F., 1982, A controlled, prospective randomized trial evaluatingthe metabolic effects of enteral and parenteral nutrition in the cancer patient, Cancer 49: 1092–1102.CrossRefGoogle Scholar
  16. Burt, M. E., Aoki, T. T., Borschboth, C. M., and Brennan, M. F., 1983a, Peripheral tissue metabolism in cancer-bearing man, Ann. Surg. 198: 685–691.CrossRefGoogle Scholar
  17. Burt, M. E., Stein, T. P., and Brennan, M. F., 1983b, A controlled randomized trial evaluating the effects of enteral and parenteral nutrition on protein metabolism in cancer-bearing man, J. Surg. Res. 34: 303–314.CrossRefGoogle Scholar
  18. Burt, M. E., Stein, T. P., Schwade, J. G., and Brennan, M. F., 1984, Whole body protein metabolism in cancer bearing patients: Effect of total parenteral nutrition and associated serum insulin response, Cancer 53: 1246–1252.CrossRefGoogle Scholar
  19. Buzby, G. P., Mullen, J. L., Stein, T. P., Miller, E. F., Hobbs, C. L., and Rosato, E. F., 1980, Host tumor interaction and nutrient supply, Cancer 45: 2940–2948.CrossRefGoogle Scholar
  20. Campos, A. C. L., and Meguid, M. M., 1990, Mechanism of improved nitrogen-sparing of branched chain amino acid TPN solutions enriched with different leucine concentration in malnourished postoperative cancer patients, Am. J. Surg. (submitted).Google Scholar
  21. Campos, A. C. L., Vic, P., Crastes de Paulet, P., Astre, C., Liu, Y. Y., Saint-Aubert, B., Crastes de Paulet, A., and Joyeux, H., 1984, Beneficial effect of lipid infusion during liver regeneration after 65% hepatectomy in the dog, in: Advances in Hepatic Encephalopathy and Urea Cycle Diagnosis ( G. Kleinberger, P. Ferenci, P. Riederer, and H. Thaler, eds.) Karger, Basel, pp. 720–724.Google Scholar
  22. Campos, A. C. L., Chen, M., and Meguid, M. M., 1990, Comparisons of body composition derived from anthropomorphic and bioelectrical impedance methods, J. Am. Coll. Nutr. 8: 484–489.Google Scholar
  23. Carmichael, M. J., Clague, M. B., Keir, M. J., Johnston, I. D. A., 1980, Whole body protein turnover, synthesis and breakdown in patients with colorectal carcinoma, Br. J. Surg. 67: 736–739.CrossRefGoogle Scholar
  24. Christensen, H. N., 1961, Free amino acids and peptides in tissues, in: Mammalian Protein Metabolism, Volume 1 ( H. N. Munro and J. B. Allison, eds.), Academic Press, New York, pp. 105–124.Google Scholar
  25. Cohn, S. H., Vartsky, D., Vaswani, A. N., Sawitsky, A., Rai, K., Gartenhaus, W., Yasumura, S., and Ellis, K. J., 1982, Changes in body composition of cancer patients following combined nutritional support, Nutr. Cancer 4: 107–119.CrossRefGoogle Scholar
  26. Costa, G., 1977, Cachexia, the matabolic component of neoplastic diseases, Cancer Res. 37: 2327–2335.Google Scholar
  27. Crosby, L. E., Bistrian, B. R., Ling, P., Istfan, N. W., Blackburn, B. L., and Hoffman, S. B., 1988, Effects of branched chain amino acid-enriched total parenteral nutrition on amino acid utilization in rats bearing yoshida sarcoma, Cancer Res. 48: 2698–2702.Google Scholar
  28. Demsey, D. T., and Mullen, J. L., 1985, Macronutrient requirements in the malnourished cancer patient, Cancer 197: 152–162.Google Scholar
  29. Devereux, D. F., Redgrave, T. G., Loda, M., Clowes, G. H. A., Jr., and Deckers, P. J., 1985, Tumor-associated metabolism in the rat is a unique physiologic entity, J. Surg. Res. 38: 149–153.CrossRefGoogle Scholar
  30. DeWys, W. D., 1977, Anorexia in cancer patients, Cancer Res. 37: 2354–2358.Google Scholar
  31. Dilman, V. M., Berstein, L. M., Ostroumova, M. N., Tsyrlina, Y. V., and Goluber, A. G., 1981, Peculiarities of hyperlipidemia in tumor patients, Br. J. Cancer 43: 637–643.CrossRefGoogle Scholar
  32. Eden, E., Edstrom, S., Bennegard, K., Scherstein, T., and Lundholm, K., 1984, Glucose flux in relation to energy expenditure in malnourished patients with and without cancer during periods of fasting and feeding, Cancer Res. 44: 1718–1724.Google Scholar
  33. Edmonson, J. H., 1966, Fatty acid mobilization and glucose metabolism in patients with cancer, Cancer 19: 277–280.CrossRefGoogle Scholar
  34. Elwood, J. C., Lin, Y. C., Cristofalo, V. J., Weinhouse, S., and Morris, H. P., 1963, Glucose utilization in homogenates of the Morris hepatoma 5123 and related tumors, Cancer Res. 23: 906–913.Google Scholar
  35. Frederick, G. L., and Begg, R. W., 1954, Development of lipidemia during tumor growth in rat, Proc. Am. Assoc. Cancer Res. 1: 14–18.Google Scholar
  36. Gerry, K. L., Witt, B. H., Track, N. S., McDonnell, M., Makowka, L., and Falk, R. E., 1982, The effect of protein depletion upon tumor growth and host survival, J. Surg. Res. 33: 332–336.CrossRefGoogle Scholar
  37. Gold, J., 1974, Cancer cachexia and gluconeogenesis, Ann. NYAcad. Sci. 230: 103–110.CrossRefGoogle Scholar
  38. Goodgame, J. T., Lowry, S. F., Reilly, J. J., Jones, D. C., and Brennan, M. F., 1974, Nutritional manipulations and tumor growth. I. The effects of starvation, Am. J. Clin. Nutr. 32: 2277–2284.Google Scholar
  39. Goodgame, J. T., Lowry, S. F., and Brennan, M. F., 1979, Nutritional manipulations and tumor growth II. The effects of intravenous feeding, Am. J. Clin. Nutr. 32: 2285–2292.Google Scholar
  40. Goodlad, G. A., 1964, Protein metabolism and tumor growth, in: Mammalian Protein Metabolism, Volume 2, ( H. N. Munro and J. B. Allison, eds.), Academic Press, New York, pp. 415–444.Google Scholar
  41. Goseki, N., Onodera, T., Mori, S., and Menjo, M., 1982, Nippon Gan Chiryo, Gakkai Shi 17(7):1980–1916. Greengard, O., and Cayanis, E., 1983, Hormonal and dietary regulation of hepatic enzymes in tumor-bearing rats, Cancer Res. 43: 1575–1580.Google Scholar
  42. Guillino, P. M., 1976, In vivo utilization of oxygen and glucose by neoplastic tissue, Adv. Exp. Med. Biol. 75: 521–536.Google Scholar
  43. Guillino, P. M., Grantham, F. M., Courtney, A. M., and Losonczy, I., 1967, Relationship between oxygen and glucose consumption by transplanted tumors in vivo, Cancer Res. 27: 1041–1052.Google Scholar
  44. Hak, L. J., Haasch, R. H., Hammer, V. B., Mathes, T., Sandler, R. S., and Heizer, W. D., 1984, Comparison of intravenous glucose and fat calories on host and tumor growth, J. Parent. Ent. Nutri. 8: 657–659.CrossRefGoogle Scholar
  45. Hansell, D. T., Davies, J. W., and Burns, J. H., 1986, The relationship between resting energy expenditure and weight loss in benign and malignant disease, Ann. Surg. 203: 240–245.CrossRefGoogle Scholar
  46. Heber, D., Chlebowski, R. T., Ishibashi, D. E., Harrold, J. N., and Block, J. B., 1982, Abnormalities in glucose and protein metabolism in noncachetic lung cancer patients, Cancer Res. 42: 4815–4819.Google Scholar
  47. Henderson, J. F., and PePage, G. A., 1959, The nutrition of tumors: A review, Cancer Res. 19: 887–902.Google Scholar
  48. Hollander, D. M., Ebert, E. C., Roberts, A. I., and Devereux, D. F., 1986, Effects of tumor type and burden on carcass lipid depletion in mice, Surgery 100: 292–297.Google Scholar
  49. Holroyde, C. P., Gabuzda, T. G., Putnam, R. C., Paul, P., and Reichard, G. A., 1975, Altered glucose metabolism in metastatic carcinoma, Cancer Res. 35: 3710–3714.Google Scholar
  50. Holroyde, C. P., Myers, R. N., Smink, R. D., Putnam, R. C., Paul, P., and Reichard, G. A., 1977, Metabolic response to total parenteral nutrition in cancer patients, Cancer Res. 37: 3109–3114.Google Scholar
  51. Holroyde, C. P., Axelrod, R. S., Skutches, C. L., Haff, A. C., Paul, D., and Reichard, G. A., 1979, Lactate metabolism in metastatic colorectal cancer, Cancer Res. 39: 4900–4904.Google Scholar
  52. Holroyde, C. P., and Reichard, G. A., 1981, Carbohydrate metabolism in cancer cachexia, Cancer Treat. Rep. 65 (suppl.): 55–59.Google Scholar
  53. Irie, R., Kono, Y., Aoyama, H., Nakatani, T., Yasuda, K., Ozawa, K., and Tobe, T., 1983, Impaired glucose tolerance related to changes in the energy metabolism of the remnant liver after major hepatic resection, J. Lab. Clin. Med. 101: 692–698.Google Scholar
  54. Jasani, B., Donaldson, L. J., Ratcliffe, J. G., and Sohki, G. S., 1978, Mechanism of impaired glucose tolerance in patients with neoplasia, Br. J. Cancer 38: 287–292.CrossRefGoogle Scholar
  55. Jeevanandam, M., Lowry, S. F., Horowitz, G. D., and Brennan, M. F., 1984, Cancer cachexia and protein metabolism, Lancet 1: 1423–1426.CrossRefGoogle Scholar
  56. Jeevanandam, M., Horowitz, G. D., Lowry, S. F., Legaspi, A., and Brennan, M. F., 1985, Cancer cachexia: Effect of total parenteral nutrition on whole body protein kinetics in man, J. Parent. Ent. Nutr. 9: 108 (abstr.).Google Scholar
  57. Jeevanandam, M., Lowry, S. F., and Brennan, M. F., 1987, Effect of the route of nutrient administration on whole body protein kinetics in man, Metabolism 36: 968–973.CrossRefGoogle Scholar
  58. Kamada, S., Hay, E. F., and Mead, J. S., 1980, A lipid mobilizing factor in serum of tumor-bearing mice, Lipid 15: 168–174.CrossRefGoogle Scholar
  59. Kawakami, M., Pekala, P. H., Lane, M. D., and Cerami, A., 1982, Lipoprotein lipase suppression in 3T3–L1 cells by an endotoxin-induced mediator from exudate cells, Proc. Natl. Acad. Sci. USA 79: 912–916.CrossRefGoogle Scholar
  60. Kawamura, I., Moldawer, L. L., Bistrian, B. R., and Blackburn, G. L., 1981, Altered protein turnover in rats with progressive tumor growth, Surg. Forum 32: 441–444.Google Scholar
  61. Kawashima, Y., Campos, A. C. L., Meguid, M. M., Kurzer, M., and Oler, A., 1989, Ability of a benign tumor to decrease spontaneous food intake and body weight in rats, Cancer 63: 693–699.CrossRefGoogle Scholar
  62. Kien, C. L., and Camitta, B. M., 1983, Increased whole-body protein turnover in sick children with newly diagnosed leukemia or lymphoma, Cancer Res. 43: 5586–5592.Google Scholar
  63. Kimura, Y., Niwa, T., Wada, E., and Komeiji, T., 1964, Incorporation of labeled glucose carbon into different fractions of Ehrlich ascites tumor cells with special references to lipogenesis from glucose, Jpn. J. Exp. Med. 34: 267–269.Google Scholar
  64. Knox, L. S., Crosby, L. O., Feurer, I. D., Buzby, G. P., Miller, C. L., and Mullen, J. L., 1983, Energy expenditure in malnourished cancer patients, Ann. Surg. 197: 152–162.CrossRefGoogle Scholar
  65. Kralovic, R. C., Repp, E. A., and Cenedella, R. J., 1977, Studies on the mechanism of carcass fat depletion in experimental cancer. Eur. J. Cancer 18: 1071–1079.Google Scholar
  66. Kubota, A., Meguid, M. M., and Hitch, D. C., 1990, Free amino acids profiles correlate diagnostically with organ site or origin of three kinds of malignant tumor, Cancer (submitted).Google Scholar
  67. Kurzer, M., Janiszewski, J., and Meguid, M. M., 1988, Amino acid profiles in tumor bearing and non-tumor bearing malnourished rats, Cancer 62: 1492–1496.CrossRefGoogle Scholar
  68. Landel, A. M., Lo, C.-C., Meguid, M. M., and Rivera, D., 1987, Effect of methylcholanthrene-induced sarcoma and its removal on rat plasma and intracellular free amino acid content, Surg. Res. Commun. 1: 273–287.Google Scholar
  69. Lawrence, S. J., 1977, Nutritional consequences of surgical resection of the gastrointestinal tract for cancer, Cancer Res. 37: 2379–2386.Google Scholar
  70. Legaspi, A., Jeevanandam, M., Starnes, H. F., and Brennan, M. F., 1987, Whole body lipid and energy metabolism in the cancer patient, Metabolism 36: 958–963.CrossRefGoogle Scholar
  71. Lindmark, L., Bennegâard, K., Eden, E., Ekman, L., Schersten, T., Svaninger, G., and Lundholm, K., 1984, Resting energy expenditure in malnourished patients with and without cancer, Gastroenterology 87: 402–408.Google Scholar
  72. Lowry, S. F., and Brennan, M. F., 1986, Intravenous feeding of the cancer patient, in: Parenteral Nutrition, Volume 2 ( J. L. Rombeau and M. D. Caldwell, eds.), Saunders, Philadelphia, pp. 445–470.Google Scholar
  73. Lundholm, K., 1984, Energy and substrate metabolism in the cancer-bearing host, in: Nutrition in Cancer and Trauma Sepsis (F. Bozzetti and I. Dionigi, eds.), Proceedings of the 6th Congress of the European Society of Parenteral and Enteral Nutrition (ESPEN), Milan, Oct. 1–3.Google Scholar
  74. Lundholm, K., Bylund, A. C., Holm, J., and Schersten, T., 1976, Skeletal muscle metabolism in patients with malignant tumor, Eur. J. Cancer 12: 465–473.Google Scholar
  75. Lundholm, K., Edstrom, S., Ekman, L., Karlberg, I., Bylund, A. C., and Schersten, T., 1978, A comparative study of the influence of malignant tumors on host metabolism in mice and man: Evaluation of an experimental model, Cancer 42: 453–461.CrossRefGoogle Scholar
  76. Lundholm, K., Karlberg, I., Ekman, L., Edstrom, S., and Schersten, T., 1981a, Evaluation of anorexia as the cause of altered protein synthesis in skeletal muscles from non-growing mice with sarcoma, Cancer Res. 41: 1989–1996.Google Scholar
  77. Lundholm, K., Edstrom, S., Ekman, L., Karlberg, I., and Schersten, T., 1981b, Metabolism in peripheral tissues in cancer patients, Cancer Treat. Rep. 65 (S): 79–83.Google Scholar
  78. Lundholm, K., Edstrom, S., Karlberg, I., Ekman, L., and Scherstein, T., 1982, Glucose turnover, gluconeo-genesis from glycerol and estimation of net glucose cycling in cancer patients, Cancer 50: 1142–1150.CrossRefGoogle Scholar
  79. Lundholm, K., Edstrom, S., Ekman, L., Karlberg, I., Bylund-Fellenius, A. C., and Schersten, T., 1983, Activities of key enzymes in relation to glucose flux in tumor host livers, Int. J. Biochem. 15: 65–72.CrossRefGoogle Scholar
  80. Mahaffey, S. M., Copeland, E. M., and Citrin, E. M., 1985, Host and tumor compositional changes due to qualitative nutritional manipulation in TPN fed mice, J. Parent. Ent. Nutr. 9: 112.Google Scholar
  81. Marks, P. A., and Bishop, J. S., 1959, Studies on carbohydrate metabolism in patients with neoplastic disease II. Response to insulin administration, J. Clin. Invest. 38: 668–672.CrossRefGoogle Scholar
  82. May, E. T., 1969, Serum lipids in human cancer, J. Surg. Res. 9: 273–277.CrossRefGoogle Scholar
  83. Medes, G., Thomas, A. J., and Weinhouse, S., 1953, Metabolism of neoplastic tissues. IV. A study of lipid synthesis in neoplastic tissue slices in vitro, Cancer Res. 13: 27–29.Google Scholar
  84. Medes, G., Paden, G., and Weinhouse, S., 1957, Metabolism of neoplastic tissues. XI. Absorption and oxidation of dietary fatty acids by implanted tumors, Cancer Res. 17: 127–133.Google Scholar
  85. Meguid, M. M., and Dudrick, S. (eds.), 1986, Introduction to nutrition and cancer, in: Surgical Clinics of North America, Volume 66, Nos. 5 and 6, Saunders, Philadelphia.Google Scholar
  86. Meguid, M. M., Mughal, M. M., Debonis, D., Meguid, V., and Terz, J., 1986, Influence of nutritional status on the resumption of adequate food intake in patients recovering from colo-rectal cancer operation, Surg. Clin. North Am. 66: 1167–1176.Google Scholar
  87. Meguid, M. M., Landet, A. M., Lo, C.-C., and Rivera, D., 1987, Effect of tumor and tumor removal on DNA, RNA, protein tissue content and survival of methylcholanthrene sarcoma-bearing rat, Surg. Res. Commun. 1: 261–271.Google Scholar
  88. Meguid, M. M., Campos, A. C., and Hammond, W. G., 1990a, Nutrition support in surgical practice: Current knowledge and research needs: Part I, Am. J. Surg. 159: 345–358.CrossRefGoogle Scholar
  89. Meguid, M. M., Campos, A. C., and Hammond, W. G., 1990b, Nutrition support in surgical practice: Current knowledge and research needs: Part II, Am. J. Surg. 159: 427–443.CrossRefGoogle Scholar
  90. Mider, G. B., Tesluk, H., and Morton, J. J., 1948. Effects of Walker carcinoma 256 on food intake, body weight and nitrogen metabolism of growing rats, Acta Union inter contre cancer 6: 409–420.Google Scholar
  91. Miras, C. J., Legakis, N. J., and Lewis, G. M., 1967, Conversion of glucose to lipids by normal and leukemic lymphocytes, Cancer Res. 27: 2153–2158.Google Scholar
  92. Moley, J. F., Morrison, S. D., and Norton, J. A., 1985a, Insulin reversal of cancer cachexia in rats, Cancer Res. 45: 4925–4931.Google Scholar
  93. Moley, J. F., Peacock, J. E., Morrison, S. D., and Norton, J. A., 1985b, Insulin reversal of cancer-induced protein loss, Surg. Forum 36: 416–419.Google Scholar
  94. Morrison, S. D., 1976, Theoretical Review. Control of food intake in cancer cachexia. A challenge and a tool, Physiol. Behay. 17: 705–714.CrossRefGoogle Scholar
  95. Mullen, J. L., Buzby, G. P., Gertner, M. H., Stein, T. P., Hargrove, W. C., Oram-Smith, J., and Rosato, E. F., 1980, Protein synthesis of dynamics in human gastrointestinal malignancies, Surgery 87: 331–338.Google Scholar
  96. Norton, J. A., Lowry, S. F., and Brennan, M. F., 1979, Effect of work induced hypertrophy on skeletal muscle of tumor and nontumor-bearing rats, J. Appt. Physiol. 46: 654–657.Google Scholar
  97. Norton, J. A., Shamberger, R., Stein, T. P., Milne, G. W. A., and Brennan, M. F., 1981, The influence of tumour-bearing on protein metabolism in the rat, J. Surg. Res. 30: 456–462.CrossRefGoogle Scholar
  98. Norton, J. A., Gorschboth, C. M., Wesley, R. A., Burt, M. E., and Brennan, M. F., 1985, Fasting plasma amino acid levels in cancer patients, Cancer 56: 1181–1186.CrossRefGoogle Scholar
  99. Pain, V. M., Randall, D. P., and Garlick, P. J., 1984, Protein synthesis in liver and skeletal muscle of mice bearing an ascites tumor, Cancer Res. 44: 1054–1057.Google Scholar
  100. Peacock, J. L., and Norton, J. A., 1988, Impact of insulin on survival of cachexia tumor-bearing rats, J. Parent. Ent. Nutr. 12: 260–264.CrossRefGoogle Scholar
  101. Peacock, J. L., Inculet, R. I., Corsey, R., Ford, D. B., Rumble, W. F., Lawson, D., and Norton, J. A., 1987, Resting energy expenditure and body cell mass alterations in noncachetic patients with sarcomas, Surgery 102: 465–472.Google Scholar
  102. Popp, M. B., Kirkemo, A. K., Morrison, S. D., and Brennan, M. F., 1984, Tumor and host carcass changes during total parenteral nutrition in an anorectic rat-tumor system, Ann. Surg. 199: 205–210.CrossRefGoogle Scholar
  103. Reichard, G. A., Jr., Moury, N. F., Jr., Hochella, N. J., Putnam, R. C., and Weinhouse, S., 1964, Metabolism of neoplastic tissue. XVII. Blood glucose replacement rates in human cancer patients, Cancer Res. 24: 71–76.Google Scholar
  104. Reilly, J. J., Goodgame, J. T., Jones, D. C., and Brennan, M. F., 1977, DNA synthesis in rat sarcoma and liver; the effects of starvation, J. Surg. Res. 22: 281–286.CrossRefGoogle Scholar
  105. Rennie, M. J., Edwards, R. H. T., Emery, P. W., Halliday, D., Lundholm, K., and Millward, D. J., 1983, Depressed protein synthesis is the dominant characteristic of muscle wasting and cachexia, Clin. Physiol. 3: 387–398.CrossRefGoogle Scholar
  106. Rofe, A. M., Bais, R., and Conyers, R. A. J., 1986, Ketone-body metabolism in tumor-bearing rats, Biochem. J. 233: 485.Google Scholar
  107. Rose, D., Horowitz, G. D., Jeevanandam, M., Brennan, M. F., Shires, G. T., and Lowry, S. F., 1983, Whole-body protein kinetics during acute starvation and intravenous refeeding in normal man, Fed. Proc. 42: 1070 (abstr.).Google Scholar
  108. Russell, D. McR., Shike, M., Marliss, E. B., Detsky, A. S., Shepherd, F. A., Feld, R., Evans, W. K., and Jeejeebhoy, K. N., 1984, Effects of total parenteral nutrition and chemotherapy on the metabolic derangements in small cell lung cancer, Cancer Res. 44: 1706–1711.Google Scholar
  109. Sabine, J. R., and Chaikoff, I. L., 1967, Control of fatty acid synthesis in homogenate preparations of mouse hepatoma BW 7756, Aust. J. Exp. Biol. Med. Sci. 4: 541–548.Google Scholar
  110. Sabine, J. R., Abraham, S. and Chaikoff, I. L., 1966, Lack of feedback control fatty acid synthesis in a transplantable hepatoma, Biochim. Biophys. Acta 11: 407–409.Google Scholar
  111. Sabine, J. R., Abraham, S., and Chaikoff, I. L., 1967, Control of lipid metabolism in hepatomas. Insensitivity of the rate of fatty acid and cholesterol synthesis by mouse hepatoma BW 7756 to fasting and to feedback control, Cancer Res. 27: 793–799.Google Scholar
  112. Sabine, J. R., Abraham, S., and Morris, H. P., 1968, Defective dietary control fatty acid metabolism in four transplantable rat hepatomas; numbers 51230, 7793, 7795 and 7800, Cancer Res. 28: 45–61.Google Scholar
  113. Salim, S. E., Hitchcock-Bryan, S., Gelber, R., Cassady, J. R., Frei, E., 3d, and Nathan, D. G., 1983, Influence of intensive asparaginase in the treatment of childhood non T cell acute lymphoblastic leukemia, Cancer Res. 43: 5601–5607.Google Scholar
  114. Sandstedt, C., Lennmarken, C., Symreng, T., Vinnars, E., and Larsson, J., 1985, The effect of preoperative total parenteral nutrition on energy rich phosphates, electrolytes and free amino acids in skeletal muscle of malnourished patients with gastric carcinoma, Br. J. Surg. 72: 920–924.CrossRefGoogle Scholar
  115. Schaur, R. J., Semmelrock, H. J., Schreibmayer, W., Tillian, H. M., and Schwastein, E., 1980, Timor host relations, J. Cancer Res. Clin. Oncol. 97: 285–293.CrossRefGoogle Scholar
  116. Schein, P. S., Kasner, D., Haller, D., Blecher, M., and Hamosh, M., 1979, Cachexia of malignancy; potential role of insulin in nutritional management, Cancer 43: 2070–2076.CrossRefGoogle Scholar
  117. Shan, L. H. F., and Wolfe, R. R., 1987, Fatty acid and glycerol kinetics in septic patients and in patients with gastrointestinal cancer. The response to glucose infusion and parenteral feeding, Ann. Surg. 205: 368–376.CrossRefGoogle Scholar
  118. Sherman, C. D., Jr., Morton, J. J., and Mider, G. B., 1950, Potential sources of tumor nitrogen, Cancer Res. 10: 374–378.Google Scholar
  119. Shizgal, H. M., 1985, Body composition of patients with malnutrition and cancer. Summary of methods of assessment, Cancer 55: 250–253.CrossRefGoogle Scholar
  120. Spechler, S. J., Esposito, A. L., Koff, R. S., and Hong, W. K., 1978, Lactic acidosis in oat cell carcinoma with extensive hepatic metastases, Arch. Intern. Med. 138: 1663–1664.CrossRefGoogle Scholar
  121. Spector, A. A., 1969, Influence of pH on the medium on free fatty acid utilization by isolated mammalian cells, J. Lipid Res. 10: 270–215.Google Scholar
  122. Spector, A. A., and Steinberg, D., 1966, Relationship between fatty acid and glucose utilization in Ehrlich ascites tumor cells, J. Lipid Res. 7: 657–663.Google Scholar
  123. Spector, A. A., and Steinberg, D., 1967a, The effect of fatty acid structure on utilization of Ehrlich ascites tumor cells, Cancer Res. 27: 1587–1594.Google Scholar
  124. Spector, A. A., and Steinberg, D., 1967b, Turnover and utilization of esterified fatty acids in Ehrlich ascites tumor cells, J. Biol. Chem. 242: 3057–3062.Google Scholar
  125. Spector, A. A., Steinberg, D., and Tanaka, A., 1965, Uptake of free fatty acids by Ehrlich ascites tumor cells, J. Biol. Chem. 240: 1032–1041.Google Scholar
  126. Spiegel, R. J., Schaefer, E. J., Magrath, I. T., and Edwards, B. K., 1982, Plasma lipid alterations in leukemia and lymphoma, Am. J. Med. 72: 775–782.CrossRefGoogle Scholar
  127. Stein, T. P., Oram-Smith, J. C., Leskiw, M. J., Wallace, H. W., and Miller, E. F., 1976, Tumor caused changes in host protein synthesis under dietary situations, Cancer Res. 36: 2926–2940.Google Scholar
  128. Stein, T. P., Buzby, G. P., Rosato, E. F., and Mullen, J. L., 1981, Effect of parenteral nutrition on protein synthesis in adult cancer patients, Am. J. Clin. Nutr. 34: 1484–1488.Google Scholar
  129. Stovroff, M. C., Fraker, D. L., and Norton, J. A., 1989, Cachectin activity in the serum of cachetic, tumor-bearing rats, Arch. Surg. 124: 94–99.CrossRefGoogle Scholar
  130. Tachibana, K., Mukai, K., Hiraoka, I., Moriguchi, S., Takama, S., and Kishino, Y., 1985, Evolution of the effect of arginine enriched amino acid solution on tumor growth, J. Parent. Ent. Nutr. 9: 428–434.CrossRefGoogle Scholar
  131. Tashiro, T., Mashima, Y., Yamamori, H., and Okui, K., 1986, Alteration of lipoprotein profile during total parenteral nutrition with Intralipid 10%, J. Parent. Ent. Nutr. 10: 622–626.CrossRefGoogle Scholar
  132. Tayek, J. A., Bistrian, B. R., Ling, P., Istfan, N. W., Blackburn, B. L., and Hoffman, S. B., 1986, Effects of branched chain amino acid-enriched total parenteral nutrition on amino acid utilization in rats bear yoshida sarcoma, Cancer Res. 48: 2698–2702.Google Scholar
  133. Tisdale, M. J., and Brennan, R. A., 1988, A comparison of long-chain triglycerides and medium-chain triglycerides on weight loss and tumor size in a cachexia model, Br. J. Cancer 58: 580–583.CrossRefGoogle Scholar
  134. Unger, R. H., 1966, The riddle of tumor hypoglycemia, Am. J. Med. 40: 325–330.CrossRefGoogle Scholar
  135. Vlassara, H., Spiegel, R. J., Doval, D. S., and Cerami, A., 1986, Reduced plasma lipoprotein lipase activity in patients with malignancy-associated weight loss, Horm. Metabol. Res. 18: 698–703.CrossRefGoogle Scholar
  136. Waitzberg, D. L., Goncalves, E. L., and Faintuch, J., 1989, Effect of diets with different protein levels on the growth of Walker 256 carcinosarcoma in rats, Brazilian J. Med. Biol. Res. 22: 447–455.Google Scholar
  137. Warburg, 0., 1956, On the origin of cancer cells, Science 123: 309–314.CrossRefGoogle Scholar
  138. Warnold, I., Lundholm, K., and Scherstein, T., 1978, Energy balance and body composition in cancer patients, Cancer Res. 38: 1801–1807.Google Scholar
  139. Warren, R. S., Jeevanandam, M., and Brennan, M. F., 1987, Comparison of hepatic protein synthesis in vivo versus in vitro in the tumor-bearing rat, J. Surg. Res. 42: 43–50.CrossRefGoogle Scholar
  140. Waterhouse, C., and Kemperman, J. H., 1971, Carbohydrate metabolism in subjects with cancer, Cancer Res. 31: 1273–1278.Google Scholar
  141. Waterhouse, C., Jeanpetre, N., and Keilson, J., 1979, Gluconeogenesis from alanine in patients with progressive malignant disease, Cancer Res. 39: 1968–1972.Google Scholar
  142. Watson, J. A., 1972, Regulation of lipid metabolism in in vitro cultured minimal deviation hepatoma 7288C, Lipids 7: 146–155.CrossRefGoogle Scholar
  143. Weber, M. J., 1973, Hexose transport in normal and in Rous sarcoma virus-transformed cells, J. Biol. Chem. 248: 2978, 2983.Google Scholar
  144. Weber, S., Banerjee, G., and Moms, H. P., 1961, Comparative biochemistry of hepatomas. I. Carbohydrate enzymes in Morris hepatoma 5123, Cancer Res. 21: 933–937.Google Scholar
  145. Weinhouse, S., 1951, Studies on the fate of isotopically labeled metabolites in the oxidative metabolism of tumors, Cancer Res. 11: 585–591.Google Scholar
  146. Weinhouse, S., 1972, Glycolysis, respiration, and anomalous gene expression in experimental hepatomas, Cancer Res. 32: 2007–2016.Google Scholar
  147. Whitlock, D., and Meguid, M. M., 1988, Muscle performance and ATP status in 21 day MCA-tumor bearing rats, Clin. Res. 36: 774A.Google Scholar
  148. Wolfe, R. R., O’Donnell, T. F., Stone, M. D., Richmand, D. A., and Burke, J. F., 1980, Investigation of factors determining the optimal glucose infusion rate in total parenteral nutrition, Metabolism 29: 892–900.CrossRefGoogle Scholar
  149. Wright, J. D., and Green, C., 1971, The role of the plasma membrane in fatty acid uptake by rat liver parenchymal cells, Biochem. J. 123: 837–844.Google Scholar
  150. Young, V. R., 1977, Energy metabolism and requirements in the cancer patient, Cancer Res. 37: 2336–2347.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Antonio C. L. Campos
    • 1
  • Dan L. Waitzberg
    • 1
  • Michael M. Meguid
    • 1
  1. 1.Surgical Metabolism and Nutrition Laboratory, Department of SurgeryUniversity HospitalSyracuseUSA

Personalised recommendations