Two-Dimensional Protein Profiles and Fatty-Acid Compositions in Coccoid Forms of Campylobacter jejuni

  • Wilma C. Hazeleger
  • Jaap D. Janse
  • Petra M. F. J. Koenraad
  • Rijkelt R. Beumer
  • Frank M. Rombouts
  • Tjakko Abee

Abstract

It is generally known that campylobacter cells are transformed from the normal spiral form into a coccoid form under unfavourable conditions (Fig. 1). This coccoid form, which is evident at both growth and environmental temperatures,8 is not culturable using available techniques. However, it may play a role in survival of campylobacters during the contamination cycle comparable to the situation in Vibrio, Salmonella, Legionella and Shigella species for which transformations to a viable nonculturable form and reversions have been described.5 The transition to the nonculturable coccoid form in C. jejuni is influenced by temperature and medium composition2 and occurs above and below the minimum growth temperature of 32°C.8 To explore whether formation of cocci is an active process, both protein profiles and fatty-acid compositions of spirals and cocci formed at 4°C and 25°C were compared and the effects of protein synthesis inhibition and DNA damage were determined.

Keywords

Gamma Irradiation Protein Profile Medium Composition2 Shigella Species Spiral Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doyle M.R and Roman D.J. (1981) J. Food Prot. 44, 596–601.Google Scholar
  2. 2.
    Hazeleger W.C., Janse J.D., Koenraad RM.F.J., Beumer R.R., Rombouts, F.M. and Abee T. (1995) Appl. Environ. Microbiol. 61, 2713–2719.PubMedGoogle Scholar
  3. 3.
    Holmquist L., Jouperjaan Å., Weichart D., Nelson D.R. and Kjelleberg S. (1993) FEMS Microbiol. Ecol. 12, 185–194.CrossRefGoogle Scholar
  4. 4.
    Linder K. and Oliver J.D. (1989) Appl. Environ. Microbiol. 55, 2837–2842.PubMedGoogle Scholar
  5. 5.
    McKay A.M. (1992) Lett. Appl. Microbiol. 14, 129–135.CrossRefGoogle Scholar
  6. 6.
    Miller L. and Berger T. (1985) Application Note 228-41. Hewlett-Packard Palo Alto, Calif.Google Scholar
  7. 7.
    Reeve C.A., Amy P.S. and Matin A. (1984) J. Bacteriol. 160, 1041–1046.PubMedGoogle Scholar
  8. 8.
    Rollins D.M. and Colwell R.R. (1986) Appl. Environ. Microbiol. 52, 531–538.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Wilma C. Hazeleger
    • 1
  • Jaap D. Janse
    • 2
  • Petra M. F. J. Koenraad
    • 1
  • Rijkelt R. Beumer
    • 1
  • Frank M. Rombouts
    • 1
  • Tjakko Abee
    • 1
  1. 1.Department of Food ScienceWageningen Agricultural UniversityWageningenThe Netherlands
  2. 2.Department of BacteriologyPlant Protection ServiceWageningenThe Netherlands

Personalised recommendations