The Formation of Viable but Nonculturable C. jejuni and Their Failure to Colonise One-Day-Old Chicks

  • C. Fearnley
  • R. Ayling
  • S. Cawthraw
  • D. G. NewellEmail author


Often in presumptive waterborne outbreaks of campylobacteriosis, the causative strain is not isolated from the environmental source1, 2. It is believed that conventional culture techniques fail, due to the presence of viable but nonculturable (VNC) forms. Rollins & Colwell3 have experimentaly demonstrated that campylobacters produce VNC forms in water microcosms. Nethertheless the ability of VNC forms of C.jejuni to colonise susceptible individuals is debatable. To date animal model studies have given conflicting results4,5. However in these previous studies the definition of VNC forms was questionable. Therefore this study was undertaken to generate well-defined VNC forms using C.jejuni strains maintained for long periods in severe nutrient-depleted conditions and to assess their infectivity using a one-day-old chick colonisation model.


Total Viability Count Total Bacterial Count Initial Cell Concentration Active Electron Transport Total Bacterial Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vogt R.L., Sours H.E., Barrett T., Feldman R.A., Dickinson R.J., & Witherell L. (1982) Ann. Intern. Med. 96, 292–296.PubMedCrossRefGoogle Scholar
  2. 2.
    Tiehan W., and Vogt R.L. (1978) Vermont. Morbid. Mortal. Weekly Rep, 27, 207.Google Scholar
  3. 3.
    Rollins D.M. and Colwell R.R. (1986) Appl. Environ. Microbiol, 52(3), 531–538.PubMedGoogle Scholar
  4. 4.
    Medema G.J., Schets F.M., van de Giessen A.W., and Havelaar A.H. (1992) J. Appl. Bacteriol, 72, 512–516.PubMedCrossRefGoogle Scholar
  5. 5.
    Stern N.J., Jones D.M., Wesley I.V. & Rollins, D.M. (1994) Lett. Appl. Microbiol, 18, 333–336.CrossRefGoogle Scholar
  6. 6.
    Pine L, Hoffman P.S., Malcolm G.B., Benson R.F. & Franzus M.J. (1986) J. Clin. Microbiol, 23(1), 33–42.PubMedGoogle Scholar
  7. 7.
    Humphrey T.J.(1986) J. Appl. Bacteriol, 61, 125–132.Google Scholar
  8. 8.
    Rodriguez G.G., Phipps D., Ishiguro K. & Ridgway H.F. (1992) Appl. Environ. Microbiol, 58(6), 1801–1808.PubMedGoogle Scholar
  9. 9.
    Wassenaar T.M., Bernard A.M., Zeijst Van der, Ayling R. & Newell D.G.(1993) J. Gen. Microbiol, 139. 1171–1175.PubMedCrossRefGoogle Scholar
  10. 10.
    Jones D.M., Sutcliffe E.M. and Curry A. (1991) J. Gen. Microbiol, 137, 2477–2482.PubMedCrossRefGoogle Scholar
  11. 11.
    Rahman I., Shahamat M. Kirchman P.A., Russek-Cohen F. & Colwell R.R. (1994) Appl. Environ. Microbiol, 60, 3573–3578.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • C. Fearnley
    • 1
  • R. Ayling
    • 1
  • S. Cawthraw
    • 1
  • D. G. Newell
    • 1
    Email author
  1. 1.Central Veterinary Laboratory (Weybridge)New Haw, Addlestone, SurreyUK

Personalised recommendations