Endocytosis of Campylobacter Jejuni into Caco-2 Cells

A Role for Caveolae and Host Protein Phosphorylation
  • Karl G. Wooldridge
  • Peter H. Williams
  • Julian M. Ketley


Some strains of C. jejuni are able to enter a variety of eukaryotic cells in culture and this characteristic is thought to reflect the ability of the organism to invade host cells in the gut. This ability is believed to be an important determinant of virulence for these organisms4,6,7,9. In order to study the mechanisms by which campylobacters enter into eukaryotic cells several groups have used a number of different cell lines and strains of C. jejuni. Evidence has been presented for an involvement in endocytosis of microfilaments6, microtubules and clathryn-coated pits7 and an energy dependent mechanism involving none of these host components9. Nothing is currently known of the signal transduction pathways involved in induced uptake of cell associated C. jejuni into eukaryotic cells.


Cholera Toxin Pertussis Toxin Myosin Light Chain Kinase Monodansyl Cadaverine Cell BioI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chun M., Liyange U.K., Lisanti M.P. and Lodish H.F. (1994) Proc. Natl. Acad. Sci. USA 91. 11728–11732.PubMedCrossRefGoogle Scholar
  2. 2.
    Dehio C., Prévost M.-C. and Sansonetti P.J. (1995) EMBO J. 14, 2471–2482.PubMedGoogle Scholar
  3. 3.
    Eker P., Holm P.K., van Deurs B. and Sandvig K. (1994) J. Biol. Chem. 269, 18607–18615.PubMedGoogle Scholar
  4. 4.
    Everest P.H., Goossens H., Butzler J.-P., Lloyd D., Knutton S., Ketley J.M. and Williams P.H. (1992) J. Med. Microbiol. 37, 319–325.PubMedCrossRefGoogle Scholar
  5. 5.
    Hawkins P.T., Eguinoa A., Qiu R.-G., Stokoe D., Cook F.T., Walters R., Wennström S, Claesson-Welsh L., Evans T., Symons M. and Stephens L. (1995) Curr. Biol. 5, 393–403.PubMedCrossRefGoogle Scholar
  6. 6.
    Konkel M.E., Hayes S.F., Joens L.A. and Cieplak Jr W. (1992) Microb. Pathogen. 13, 357–370.CrossRefGoogle Scholar
  7. 7.
    Oelschlaeger T.A., Guerry P., and Kopecko D.J. (1993) Proc. Natl. Acad. Sci. USA 90, 6884–6888.PubMedCrossRefGoogle Scholar
  8. 8.
    Rosenshine I., Duronio V. and Finlay B. (1992) Infect. Immun. 60, 2211–2217.Google Scholar
  9. 9.
    Russel R.G. and Blake Jr. C.C. (1994) Infect. Immun. 62, 3773–3779.Google Scholar
  10. 10.
    Sargiacomo M., Scherer P.E., Tang Z. and Casanova J.E, (1994) Oncogene 9, 2589–2595.PubMedGoogle Scholar
  11. 11.
    Schnitzer J.E., Oh P., Pinney E. and Allard J. (1994) J. Cell Biol. 127, 1217–1232.PubMedCrossRefGoogle Scholar
  12. 12.
    Stephens L., Smrcka A., Cooke F.T., Jackson T.R., Sternweis P.C. and Hawkins P.T. (1994) Cell 77, 83–93.PubMedCrossRefGoogle Scholar
  13. 13.
    van der Geer P., Hunter T. and Lindberg R.A. (1994) Annu. Rev. Cell Biol. 10, 251–337.PubMedCrossRefGoogle Scholar
  14. 14.
    Yano H., Nakanishi S., Kimura K., Hanai N., Saitoh Y, Fukui Y, Nonomura Y. and Matsuda Y. (1993) J. Biol. Chem. 268, 25846–25856.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Karl G. Wooldridge
    • 1
  • Peter H. Williams
    • 2
  • Julian M. Ketley
    • 1
  1. 1.Department of GeneticsUniversity of LeicesterLeicesterUK
  2. 2.Department of Microbiology and ImmunologyUniversity of LeicesterLeicesterUK

Personalised recommendations