Skip to main content

Balls, Chains, and Potassium Channels

  • Chapter
Calcium and Cellular Metabolism

Abstract

When depolarized most voltage-dependent channels undergo a process known as inactivation. This molecular rearrangement can take place in a time scale ranging from a few milliseconds to several seconds and is characterized by a decrease in ionic current with time after the onset of a depolarizing voltage pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman, J.P., Shen, K.Z., Kavanaugh, M.P., Warren, R.A., Wu, Y.N., Lagrutta, A., Bond, C.T., & North, R.A. (1992). Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron 9: 209–216.

    Article  PubMed  CAS  Google Scholar 

  • Aldrich, R.W., Hoshi, T., & Zagotta, W.N. (1990). Differences in gating among amino-terminal variants of Shaker potassium channels. Cold Spring Harbor Symp.Quant.Biol. 55: 19–27.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, C.M., Bezanilla, F., & Rojas, E. (1973). Destruction of sodium conductance inactivation in squid axons perfused with pronase. J.Gen.Physiol. 62: 375–391.

    Article  PubMed  CAS  Google Scholar 

  • Baumann, A., Grupe, A., Ackermann, A., & Pongs, O. (1996). Structure of the voltage-dependent channel is highly conserved from Drosophila to vertebrate central nervous system. EMBO J. 7: 2457–2463.

    Google Scholar 

  • Beirao, P.S.L., Davies, N.W., & Stanfield, P.R. (1994). Inactivating `ball’ peptide from Shaker B blocks Ca“-activated but not ATP-dependent K’ channels of rat skeletal muscle. J.Physiol.(Lond.) 474: 269–274.

    CAS  Google Scholar 

  • Bezanilla, F. & Armstrong, C.M. (1977). Inactivation of the sodium channel. I. Sodium current experiments. J.Gen.Physiol. 70: 549–566.

    Google Scholar 

  • Bezanilla, F., Perozo, E., Papazian, D.M., and Stefani, E. (1991). Molecular basis of gating charge immobilization in Shaker potassium channels. Science 254: 679–683.

    Article  PubMed  CAS  Google Scholar 

  • Choi, K.L., Aldrich. R.W., & Yellen. G. (1991). Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc.Natl.Acad.Sci.USA 88: 5092–5095.

    Article  CAS  Google Scholar 

  • Collins, A., German, M.S., Jan, Y.-N., Jan, L.Y., & Zhao, B. (1996). A strongly inwardly rectifying K’ channel that is sensitive to ATP. J. Neurosci. 16: 1–9.

    PubMed  CAS  Google Scholar 

  • Demo, S.D. & Yellen, G. (1991). The inactivation gate of the Shaker K’ channel behaves like an open-channel blocker. Neuron 7: 743–753.

    Article  PubMed  CAS  Google Scholar 

  • Dubinsky, W.P., Mayorga-Wark, 0., & Schultz, S.G. (1992). A peptide from the Drosophila Shaker K’ channel inhibits a voltage-gated K’ channel in basolateral membranes of Nech+rus enterocytes. Proc.Natl.Acad.Sci.USA 89: 1770–1774.

    CAS  Google Scholar 

  • England, S.K., Uebeles, V.N., Kodali, J., Bennett, P.B., & Tamkun, M.M. (1995a). A novel K’ channel h subunit (hKvbl.3) is produced by alternative splicing. J. Biol. Chem. 270: 28531–28534.

    Google Scholar 

  • England, S.K., Uebele, V.N., Shear, H., Kodali, J., Bennett, P.B., & Tamkun, M.M. (1995). Characterization of a voltage-gated K’ channel b subunit expressed in human heart. Proc. Natl. Acad. Sci. USA 92: 6309–6313.

    Google Scholar 

  • Fernandez-Ballester, G., Gavillanes, F., Alvar, J.P., Criado, M., Ferragut, J.A., & Gonzales-Ros, J.M. (1995). Adoption of b structure by the inactivating “ball” peptide of the Shaker B potassium channel. Biophys. J. 68: 858–865.

    Google Scholar 

  • Foster, C.D., Chung, S., Zagotta, W.N., Aldrich, R.W., & Levitan, I.B. (1992). A peptide derived from the Shaker B K` channel produces short and long blocks of reconstituted Ca“-dependent K’ channels. Neuron 9: 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Lagunas, F. & Armstrong, C.M. (1995). Inactivation in ShakerB K’ channels: A test for the number of inactivating particles on each channel. Biophys. J. 68: 89–95.

    Google Scholar 

  • Heinemann, S.H., Rettig,J., & Pongs,O. (1995). Functional expression of three K channel b-subunits. Biophys. J. 68, A361 (Abstr.)

    Google Scholar 

  • Hoshi, T., Zagotta, W.N., & Aldrich, R.W. (1990). Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 250: 533–538.

    Article  PubMed  CAS  Google Scholar 

  • Isacoff, E.Y., Jan, Y.N., & Jan, L.Y. (1991). Putative receptor for the cytoplasmic inactivation gate in the Shaker K’ channel. Nature 353: 86–90.

    Article  PubMed  CAS  Google Scholar 

  • Iverson, L.E. & Rudy, B. (1990). The role of divergent amino and carboxyl domains on the inactivation properties of potassium channels derived from the Shaker gene of Drosophila. J. Neurosci. 10: 2903–2916.

    PubMed  CAS  Google Scholar 

  • Jan, L.Y. & Jan, Y.N. (1990a). A superfamily of ion channels. Nature (London) 345: 672.

    Article  CAS  Google Scholar 

  • Jan, L.Y. & Jan, Y.N. (19906). How might the diversity of potassium channels be generated. Trends Neurol. Sci. I3: 415–419.

    Google Scholar 

  • Kamb, A., Tweng-Drank, J., & Tanouye, M.A. (1988). Multiple products of the Drosophila Shaker gene may contribute to poasssium channel diversity. Neuron 1: 421–430.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, H.P., Baker, O.S., Dhillon, D.S., & lsacoff, E.Y. (1996). Transmembrane movement of the Shaker K’ channel S4. Neuron 16: 387–397.

    Article  PubMed  CAS  Google Scholar 

  • Latorre, R. & Labarca, P. (1996). Potassium channels: Diversity, assembly. and differential expression. In: Potassium Channels and Their Modulators: From Synthesis to Clinical Experience, edited by Evans, i.M., Hamilton, T.C., Longman, S.D., & Stemp, G. London: Taylor & Francis, p. 123–156.

    Google Scholar 

  • Liman, E.R., Tytgat, J., & Hess, P. (1992). Subunit stoichiometry of a mammalian K’ channel determined by construction of multimeric cDNAs. Neuron 9: 861–871.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, G.A., Jan. Y.N., & Jan, L.Y. (1994). Evidence that the S6 segment of the Shaker voltage-gated K channel comprises part of the pore. Nature 367: 179–182.

    CAS  Google Scholar 

  • MacKinnon, R. (1991). Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350: 232–235.

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon, R., Aldrich, R.W., & Lee, A.W. (1993). Functional stoichiometry of Shaker potassium channel inactivation. Science 263: 757–759.

    Article  Google Scholar 

  • Majumder,K., DeBiasi,M., Wang,Z., & Wibble,B.A. (1995). Molecular cloning and functional expression of a novel potassium channel b-subunit from human atrium. FEBS Lett. 361: 13–16

    Article  Google Scholar 

  • Mannuzzu, L.M., Moronne, M.M., & Isacoff, E.Y. (1996). Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271: 213–216.

    Article  PubMed  CAS  Google Scholar 

  • Meera, P., Wallner, M., Jiang, Z. & Toro, L. (1996). A calcium switch for the functional coupling between a (hslo) and 13 subunits (Kvc.a13) of MaxiK channels. FEBS Lett. 382: 84–88.

    Article  PubMed  CAS  Google Scholar 

  • Miller, C. (1988). Competition for block of a Cat’ -activated K’ channel by charybdotoxin and tetraethylammonium. Neuron 1: 1003–1006.

    Article  PubMed  CAS  Google Scholar 

  • Morales, M.J., Castellino, R.C., Crews, A.L., Rasmusson, R.L., & Strauss, H.C. (1995). A novel b subunit increases rate of inactivation of specific voltage-gated potassium channel a subunit. J.Biol.Chem. 270: 6272–6277.

    Article  PubMed  CAS  Google Scholar 

  • Murrell-Lagnado, R.D. & Aldrich, R.W. (1993a). Interactions of amino terminal domains of Shaker K channels with a pore blocking site studied with synthetic peptides. J.Gen.Physiol. 102: 949–975.

    Article  PubMed  CAS  Google Scholar 

  • Murrell-Lagnado, R.D. & Aldrich, R.W. (1993). Energetics of Shaker K channels block by inactivation peptides. J.Gen.Physiol. 102: 977–1003.

    Article  PubMed  CAS  Google Scholar 

  • Nakahira, K., Shi, G., Rhodes, K.J., & Trimmer, J.S. (1996). Selective interactions of voltage-gated K’ channels b-subunits with a-subunits. J.Biol. Chem. 271: 7084–7089.

    Google Scholar 

  • Nobile,M., Olcese,R., Chen, Y.C., Toro, L., & Stefani,E. (1993). Fast inactivation by the ball peptide in Shaker B channels is highly temperature dependent. Biophys. J. 64, 113a (Abstr.)

    Google Scholar 

  • Papazian, D.M., Shao, X.M., Seoh, A., Mock, A.F., & Wainstock, D.H. (1995). Electrostatic interactions of S4 voltage sensor in Shaker K’ channels. Neuron 14: 1293–1301.

    Article  PubMed  CAS  Google Scholar 

  • Parcej, D.N., & Dolly, J.O. (1989). Dendrotoxin receptor from bovine synaptic plasma membranes. Binding properties, purification and subunit composition of a putative constituent of certain voltage K’ channels. Biochem. J. 257: 899–903.

    Google Scholar 

  • Perozo, E., Santacruz-Toloza, L., Stefani, E., Bezanilla, F., & Papazian, D.M. (1994). S4 mutations alter gating currents of Shaker K channels. Biophys. J. 66: 345–354.

    Google Scholar 

  • Rettig, J., Heinemann, S.H., Wunder, F., Lorra, C., Parcej, D.N., Dolly, J.O., & Pongs, O. (1994). Inactivation properties of voltage-gated K’ channels altered by presence of b-subunit. Nature 369: 289–294.

    Article  PubMed  CAS  Google Scholar 

  • Roux, M. J., Toro, L., & Stefani, E. (1995). Fast inactivation of ionic currents and “charge immobilization” of Shaker H4 and ShH4 W434F K’ channels. Biophys. J. 68: A137.

    Google Scholar 

  • Ruppersberg, J.P., Frank, R., Pongs, O., & Stocker, M. (1991a). Cloned neuronal IK(A) channels reopen during recovery from inactivation. Nature 353: 657–660.

    Article  PubMed  CAS  Google Scholar 

  • Ruppersberg, J.P., Stocker, M., Pongs, O., Heinemann, S.H., Frank, R., & Koenen, M. (1991b). Regulation of fast

    Google Scholar 

  • inactivation of cloned mammalian IK(A) channels by cysteine oxidation. Nature 352:711–714.

    Google Scholar 

  • Schwarz, T.L., Tempel, B.L., Papazian, D.M., Jan, Y.N., & Jan, L.Y. (1988). Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila. Nature 331: 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Solaro, C.R. & Lingle, C.J. (1992). Trypsin-sensitive, rapid inactivation of a calcium-activated potassium channel.

    Google Scholar 

  • Science 257:1694–1698.

    Google Scholar 

  • Stephens, G.J. & Robertson, B. (1995). Inactivation of the cloned potassium channel mouse Kv1.1 by the human Kv3.4 `ball’ peptide and its chemical modification. J. Physiol. ( London ) 484: 1–13.

    Google Scholar 

  • Stocker, M., Stuhmer, W., Wittka, R., Wang, X., Muller, R., Ferrus, A., & Pongs, O. (1990). Alternative Shaker transcripts express either rapidly inactivating or noninactivating K+ channels. Proc. Natl. Acad. Sci. USA 87: 8903–8907.

    Google Scholar 

  • Tempel, B.L., Papazian, D.M., Schwarz, T.L., Jan, Y.L., & Jan, L.Y. (1987). Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237: 770–775.

    Article  PubMed  CAS  Google Scholar 

  • Timpe, L.C., Jan, Y.N., & Jan, L.Y. (1988a). Four eDNA clones from the Shaker locus of Drosophila induce kinetically distinct A-type potassium currents in Xenopus oocytes. Neuron 1: 659–667.

    Article  PubMed  CAS  Google Scholar 

  • Timpe, L.C., Schwarz, T.L., Tempel, B.L., Papazian, D.M., Jan, Y.N., & Jan, L.Y. (1988b). Expression of functional potassium channels from Shaker eDNA in Xenopus oocytes. Nature 331: 143–145.

    Article  PubMed  CAS  Google Scholar 

  • Toro, L., Ottolia, M., Stefani, E., & Latorre, R. (1994). Structural determinants in the interaction of Shaker Inactivating peptide and a Ca activated K’ channel. Biochemistry 33: 7220–7228.

    Article  PubMed  CAS  Google Scholar 

  • Toro, L., Stefani, E., & Latorre, R. (1992). Internal blockade of a Ca“-activated K’ channel by Shaker B inactivating ”ball“ peptide. Neuron 9: 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Tseng-Crank, J., Yao, J.-A., Berman, M.F., & Tseng, G.-N. (1993). Functional role of the NI-12-terminal cytoplasmic domain of a mammalian A-type K channel. J. Gen. Physiol. 102: 1057–1083.

    Google Scholar 

  • Wallner, M., Meera, P., Ottolia, M., Kaczorowski, G., Latorre, R., Garcia, M.L., Stefani, E., & Toro, L. (1995). Cloning, expression and modulation by a b-subunit of a human maxi Kc., channel cloned from human myometrium. Receptors and Channels 3: 185–199.

    PubMed  CAS  Google Scholar 

  • Zagotta, W.N., Hoshi, T., & Aldrich, R.W. (1990). Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250: 568–571.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Latorre, R., Stefani, E., Toro, L. (1997). Balls, Chains, and Potassium Channels. In: Sotelo, J.R., Benech, J.C. (eds) Calcium and Cellular Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9555-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9555-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9557-8

  • Online ISBN: 978-1-4757-9555-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics