Comparison of the Effects of BDM on L-Type Ca Channels of Cardiac and Skeletal Muscle

  • Gonzalo Ferreira
  • Pablo Artigas
  • Rafael De Armas
  • Gonzalo Pizarro
  • Gustavo Brum

Abstract

Effects of the compound 2,3 Butanedione monoxime (BDM) on force development have been described in skeletal muscle (Fryer et al., 1988), cardiac muscle (Bergey et al., 1981; West & Stephenson 1989) as well as in smooth muscle (Österman et al., 1993; Watanabe, 1993). It inhibits contraction acting at different levels: on the contractile mechanism as was shown by Horiuti et al. (1988) and Österman et al. (1993) and on the excitation-contraction coupling process (Hui & Maylie, 1991; De Armas et al., 1993; Li et al., 1985). In addition to these effects on contractility the drug reduces Ca“ current through L-type Ca2+ channels in cardiac (Coulombe et al., 1990; Chapman, 1992; Ferreira et al., 1993), skeletal muscle (Fryer et al., 1988) and smooth muscle (Lang & Paul, 1991). This reduction obeys to an enhanced voltage dependent inactivation of the channel (Chapman 1992, 1993; Ferreira et al., 1993). Since BDM is a chemical phosphatase, member of a group of oximes with the ability to reactivate cholinesterase after exposure to organo-phosphorous compounds (Wilson & Grinsberg, 1955), it has been suggested that dephosphorylation is the mechanism of action of the drug. Several experimental evidences recently provided are in line with this hypothesis (Chapman, 1993a; Chapman, 1995).

Keywords

Skeletal Muscle Peak Amplitude Skeletal Muscle Fiber Test Pulse Charge Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almers, W., Fink, R. & Palade, P.T. (1981) Calcium depletion in frog muscle tubules: the decline of calcium current under maintained depolarization. Journal of Physiology 312, 177–207.PubMedGoogle Scholar
  2. Allen, T.J.A. & Chapman, R.A. (1995). The effect of a chemical phosphatase on single calcium channels and the inactivation of whole cell calcium current from isolated guinea-pig ventricular myocytes. Pflügers Arch. 430, 68–80.PubMedCrossRefGoogle Scholar
  3. Arreola, J., Calvo, J., Garcia, M.C. & Sanchez, J.A. (1987) Modulation of calcium channels of twitch skeletal muscle fibres of the frog by adrenaline and cyclic adenosine monophosphate. Journal of Physiology 393. 307–330PubMedGoogle Scholar
  4. Bean, B. & Rios, E. (1989). Non-linear charge movement in the membranes of mammalian cardiac ventricular cells. Components from Na and Ca channel gating. Journal of General Physiology 94, 65–93.Google Scholar
  5. Bergey, J., Reiser, J., Wiggins J. & Freeman, A. (1981). Oximes: enzymatic slow channel antagonists in canine cardiac purkinje fibres? European Journal of Pharmacology 71, 307–319.PubMedCrossRefGoogle Scholar
  6. Brum,G. & Rios, E. (1987) lntramembrane charge movement in frog skeletal muscle fibers, properties of charge 2. Journal of Physiology 387, 489–517Google Scholar
  7. Brum,G., Gonzalez,S., Ferreira,G., Maggi, M. & Santi, C. (1990) Effects of adrenaline on calcium release in single fibers of frog skeletal muscle. Biophys.J. 57:342a,.Google Scholar
  8. Chapman, R. (1992) The action of 2,3-butanedione monoxime (BDM), pyridine-2-aldoxime (norPAM) and pyridine-2-aldoxime methochloride ( PAM) on the inactivation of the L-type calcium current in isolated guinea-pig ventricular myocytes. ( Abstract) Journal of Physiology 452, 196P.Google Scholar
  9. Chapman, R. (1993a). The effect of oximes on the dihydropyridine-sensitive Ca current of isolated guinea-pig ventricular myocytes. Pflügers Archives 422, 325–331.CrossRefGoogle Scholar
  10. Chapman, R.A. (1995). The introduction of trypsin into the sarcoplasm of isolated guinea-pig ventricular myocytes eliminates the inhibition of the L-type Ca2+ current caused by BDM. (Abstract) Journal of Physiology 483, 19 P.Google Scholar
  11. Coulombe, A; Lefevre, I., Deroubaix, E., Thuringer, D. & Coraboeuf, E. (1990). Effect of 2,3-Butanedione 2Monoxime on slow inward and transient outward currents in rat ventricular myocytes. Journal of Molecular and Cellular Cardiology 22, 921–932.PubMedCrossRefGoogle Scholar
  12. De Armas, R., Gonzalez, S., Pizarro, G. & Brum, G. (1993) BDM suppresses calcium release and Q Ana in skeletal muscle fibers. (Abstract) Biophysical Journal 64, 240A.Google Scholar
  13. Ferreira, G., Maggi, M., Pizarro, G. & Brum, G. (1993) BDM enhances voltage dependent inactivation of L-type calcium channel in heart. (Abstract) Biophysical Journal 64, A203.Google Scholar
  14. Ferreira, G., Artigas, P., Pizarro, G., & Brum, G. (1997) Butaneidione monoxime promotes voltage-dependent inactivation of L-type calcium channels in heart. Effects on gating currents. Journal of Molecular and Cellular Cardiology 29, 777–787.Google Scholar
  15. Fryer, M., Neering, I. & Stephenson, D. (1988). Effects of2,3-butanedione monoxime on the contractile activation properties of fast-and slow-twitch rat muscle fibres. Journal of Physiology 407, 53–75.PubMedGoogle Scholar
  16. Hadley, R., & Lederer, W. (1988). Intramembrane charge movement in guinea-pig and rat ventricular myocytes. Journal of Physiology 415, 601–624.Google Scholar
  17. Hadley, R., & Lederer, W. (199I). Properties of L-type calcium channel gating current in isolated guinea-pig ventricular myocytes. Journal of General Physiology 98, 265–285.Google Scholar
  18. Hammill, O., Marty, A., Necher, E., Sakmann, B., & Sigworth, F. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archives 391, 85–100.CrossRefGoogle Scholar
  19. Hescheler, J., Mieskes, G., Ruegg, J., Takai, A., & Trautwein, W. (1988). Effects of a protein phosphatase inhibitor, okadaic acid, on membrane currents of isolated guinea-pig cardiac myocytes. Pflügers Archives 412, 248–252.CrossRefGoogle Scholar
  20. Hess, P., & Tsien, R.W. (1984) Mechanism of permeation through calcium channels. Nature 309, 453–456PubMedCrossRefGoogle Scholar
  21. Horiuti, K., Higuchi, H., Umazume, Y., Konishi, M., Okazaki, O. & Kurihara, S. (1988). Mechanism of action of 2,3-butanedione monoxime on contraction of frog skeletal muscle fibres. Journal of Muscle Research and Cell Motility 9, 156–164.PubMedCrossRefGoogle Scholar
  22. Hodgkin, A.L., & Huxley, A.F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology 117, 500–544PubMedGoogle Scholar
  23. Hui, C., & Maybe, J. (1991). Multiple actions of 2,3-butanedione monoxime on contractile activation in frog twitch fibres. Journal of Physiology 442, 527–549.PubMedGoogle Scholar
  24. Kass, R., & Sanguinetti, C. (1984). Inactivation of calcium channel current in the calf cardiac Purkinje fiber. Journal of General Physiology 84, 705–726.PubMedCrossRefGoogle Scholar
  25. Kovacs, L., Rios, E., & Schneider, M.F. (1983) Measurement and modification of free calcium transients in frog skeletal muscle fibers by a metallochromic indicator dye. Journal of Physiology 343, 161–196.PubMedGoogle Scholar
  26. Lang, R., & Paul, R. (1991). Effects of 2,3-butanedione monoxime on whole-cell Ca“ channel currents in single cells of the guinea-pig taenia cacci. Journal of Physiology 433, 1–24.PubMedGoogle Scholar
  27. Li, T., Sperelakis, N., Teneick, R., & Solaro, J. (1985). Effect of diacetyl monoxime on cardiac excitation-contraction coupling. Journal of Pharmacology and Experimental Therapeutics. 232, 688–695.PubMedGoogle Scholar
  28. Mitra, R., & Morad, M. (1985). A uniform enzymatic method for dissociation of myocytes from hearts and stomachs of vertebrates. American Journal of Physiology 249, 1056–1060.Google Scholar
  29. Osterman, A., Amer, A., & Malmqvist, U. (1993). Effects of 2,3-butanedione monoxime on activation of contraction and crossbridge kinetics in intact and chemically skinned smooth muscle fibres from guinea-pig taenia coli. Journal of Muscle Research and Cell Motility 14, 186–194.PubMedCrossRefGoogle Scholar
  30. Pizarro, G., Csernoch, L., Uribe, Y., Rodriguez, M., & Rios, E. (1991) The relantionship between Qy and Ca release from the sarcoplasmic reticulum in skeletal muscle. Journal of General Physiology 97, 913–947.PubMedCrossRefGoogle Scholar
  31. Rios, E., & Brum, G. (1987) Involvement ofdihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325, 717–720.PubMedCrossRefGoogle Scholar
  32. Rios, E., & Pizarro, G. (1991). Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiological Reviews 71, 849–908.PubMedGoogle Scholar
  33. Schneider, M.F., & Chandler, W.K. (1973) Voltage dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling. Nature 242, 244–246.PubMedCrossRefGoogle Scholar
  34. Schwartz, L.M., McClesky. E.W., & Almers, W. (1985) Dihydropyridine receptors in muscle are voltage dependent but most are not functional calcium channels. Nature 314, 747–751.PubMedGoogle Scholar
  35. Shirokov, R., Levis, R., Shirokova, N. & Rios, E. (1992). Two classes of gating current from L-type Ca channels in guinea pig ventricular myocytes. Journal of General Physiology 99, 863–895.PubMedCrossRefGoogle Scholar
  36. Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hi-rose, T., & Numa, S. (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328, 313–318.PubMedCrossRefGoogle Scholar
  37. Trautwein, W., & Hescheler, J. (1990). Regulation of cardiac L-type calcium current by phosphorylation and G proteins. Annual Reviews of Physiology 52, 257–274.CrossRefGoogle Scholar
  38. Watanabe, M. (1993). Effects of 2,3-butanedione monoxime on smooth-muscle contraction of guinea-pig portal vein. Pflügers Archives 425, 462–468.CrossRefGoogle Scholar
  39. West J., & Stephenson, D. (1989). Contractile activation and the effects of 2,3-butanedione monoxime (BDM) in skinned cardiac preparations from normal and dystrophic mice (129/ReJ). Pflügers Archives 413, 546–552.CrossRefGoogle Scholar
  40. Wilson, 1., & Ginsberg, S. (1955). A powerful reactivator of alkyl-phosphate inhibited cholinesterase. Biochemica et Biophysica Acta 18, 168–175.CrossRefGoogle Scholar
  41. Yakel, J. (1992). Inactivation of the Ba“ current in dissociated Helix neurons: voltage dependence and the role of phosphorylation. Pflügers Archives 420, 470–478.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Gonzalo Ferreira
    • 1
  • Pablo Artigas
    • 1
  • Rafael De Armas
    • 1
  • Gonzalo Pizarro
    • 1
  • Gustavo Brum
    • 1
  1. 1.Departamento de BiofísicaFacultad de MedicinaMontevideoUruguay

Personalised recommendations