Calcium Channel Diversity at the Vertebrate Neuromuscular Junction

  • Osvaldo D. Uchitel
  • Eleonora Katz


Calcium enters the cytoplasm mainly via voltage activated calcium channels (VACC) and represents a key step in the regulation of a variety of cellular processes such as cellular excitability, neurotransmitter release, intracellular metabolism and gene expression.


Calcium Channel Neuromuscular Junction Transmitter Release Cerebellar Purkinje Neuron Frog Neuromuscular Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, V.A., Sanchez, V.N., Rosato Siri, M.D., Cherksey, B.D, Sugimori, M., Llinâs, R., & Uchitel, O.D. (1995). Pharmacological characterization of the voltage-dependent Ca2+ channels present in synaptosomes from rat and chicken Central Nervous System. J. of Neurochemistry 64: 2544–2551.Google Scholar
  2. Bean, B.P. (1989). Classes of calcium channels in vertebrate cells. Annu. Rev. Physiol. 51: 367–384.PubMedCrossRefGoogle Scholar
  3. Brigant, J.L., & Mallart, A. (1982). Presynaptic currents in mouse motor endings. Journal of Physiology 333: 619–636PubMedGoogle Scholar
  4. Catteral, W.A. (1995). Structure and function of voltage-gated ion channels. Annu. Rev. Biochem. 64: 493–531.CrossRefGoogle Scholar
  5. Dolphin, A.C., Huston, E., & Pearson, H. (1991). G protein modulation of calcium entry and transmitter release. Ann NY Acad. Sci. 635: 139–152.PubMedCrossRefGoogle Scholar
  6. Ellinor, P.T., Zhang, J.-F., & Randall (1993). Functional expression of a rapidly inactivating neuronal calcium channel. Nature. 363: 455–458.PubMedCrossRefGoogle Scholar
  7. Hofmann, F., Biel, M., Flockerzi, V. (1994). Molecular basis for Ca’’ channel diversity. Annu. Rev. Neurosci. 17: 399–418.CrossRefGoogle Scholar
  8. Katz, E., Ferro, P.A., & Cherksey, B.D. (1995). Effects of Ca“ channel blockers on transmitter release and presynaptic currents at the frog neuromuscular junction. Journal of Physiology 486: 695–706.PubMedGoogle Scholar
  9. Kerr, L.M., & Yoshikami, D. (1984). A venom peptide with a novel presynaptic blocking action. Nature 308: 282–4.PubMedCrossRefGoogle Scholar
  10. Lemos, J.R., & Nowycky, M.C. (1989). Two types of calcium channels coexist in peptide-releasing vertebrate nerve ternminals. Neuron 2: 1419–26.PubMedCrossRefGoogle Scholar
  11. Llinâs, R., Sugimori, M., & Lin, J.W. (1989). Blocking and isolation of a calcium channel from neurons in mammalian and cephalopods utilizing a toxin fraction (FTX) from funnel web spider poison. Proc. Natl. Acad. Sci. USA 86: 1689–93.PubMedCrossRefGoogle Scholar
  12. Lundy, P.M., Hamilton, M.G. & Frew, R. (1994). Pharmacological identification of a novel Ca’“’ channel in chick brain synaptosomes. Brain Research 643 (1–2): 204–210PubMedCrossRefGoogle Scholar
  13. Mallart, A. (1984). Presynaptic currents in frog motor endings. Pflugers Archives 400: 8–13.CrossRefGoogle Scholar
  14. Mallart, A. (1985a). Electric current flow inside perineurial sheaths of mouse motor nerves. Journal of Physiology 368: 565–575.PubMedGoogle Scholar
  15. Mallart, A. (1985b). A calcium-activated potassium current in motor nerve terminals of the mouse. Journal of Physiology 368: 577–591PubMedGoogle Scholar
  16. Mintz, I., Venema, V., & Swiderek, K. (1992). P-type calcium channels blocked by the spider toxin o.)-Aga IVA. Nature 355: 827–829.PubMedCrossRefGoogle Scholar
  17. Mintz, 1.M., Sabatini, B.L., & Regehr, W.G. (1995). Calcium control of transmitter release at a cerebellar synapse. Neuron 15: 675–88.PubMedCrossRefGoogle Scholar
  18. Mori, Y., Friedrich, T. & Kim, M. (1991). Primary structure and fuctional expression from complementary DNA of a brain calcium channel. Nature 350: 398–402.PubMedCrossRefGoogle Scholar
  19. Olivera, B.M., Gray, W.R., & Zeikus, R. (1985). Peptide toxins from fish-hunting cone snails. Science 230: 1338–43.PubMedCrossRefGoogle Scholar
  20. Olivera, B.M., Miljanich, G.P., & Ramachandran., J. (1994). Calcium channel diversity and neurotransmitter release: the omega-conotoxins and omega-agatoxins. Annu. Rev. Biochem. 63: 823–67.PubMedCrossRefGoogle Scholar
  21. Perez-Reyes, E., & Schneider, T. (1995). Molecular biology of calcium channels. Kidney International 48: 1111–24.PubMedCrossRefGoogle Scholar
  22. Protti, D.A., & Uchitel, O.D. (1993). Transmitter release and presynaptic Cat+ currents blocked by the spider toxin w-AGA-IVA. NeuroReport 5: 333–6.PubMedCrossRefGoogle Scholar
  23. Protti, D.A., Reisin, R., Angelillo Mackinley, T., & Uchitel, O.D. (1996). Calcium channel blockers and transmitter release at the normal human neuromuscular junction. Neurology 46: 1391–6.PubMedCrossRefGoogle Scholar
  24. Regan, L.J., Sah, D.W.Y., & Bean, B.P. (1991). Ca’-’ channels in rat central and peripheral neurons: high threshold current resistant to dihydropiridine blockers and omega-conotoxin. Neuron 6: 268–80.CrossRefGoogle Scholar
  25. Robitaille, R., & Charlton, M.P. (1992). Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassium channels. The Journal of Neuroscience 12 (21): 297–305PubMedGoogle Scholar
  26. Sather, W., Tanabe, T., & Zhang, J.F. (1993). Distinctive biophysical and pharmacological properties of class A ( BI) calcium channel a, subunits. Neuron. 11: 291–303.PubMedCrossRefGoogle Scholar
  27. Schneider, T., Wei, X., & Olcese, R. (1995). Molecular analysis and functional expression of the human type E ai subunits. Receptors and Channels. 2: 255–70.Google Scholar
  28. Scott, R.H., Sweeney, M.I., Kobrinsky, E.M. (1992). Actions of arginine polyamine on voltage and ligand-acti-vated whole cell currents recorded from cultured neurones. Br. J. Pharmacol. 106: 199–207.PubMedCrossRefGoogle Scholar
  29. Soong, T.W., Stea, A., & Hodson, C.D. (1993), Structure and functional expression of a member of the low volt-age-activated calcium channel family. Science 260: 1133–6.PubMedCrossRefGoogle Scholar
  30. Takahashi, M., & Catteral, W.A. (1987). Identification of an a-subunit of dihydropiridine-sensitive brain calcium channels. Science 236: 88–9I.PubMedCrossRefGoogle Scholar
  31. Tang, S., Mikala, G., Bahinski, A., Yatani, A., Varadi, G., & Schwartz, A. (1993). Molecular localization of ion se-lectivity sites within the pore of a human L-type cardiac calcium channel. J. Biol. Chem. 268: 13026–9.PubMedGoogle Scholar
  32. Tsien, R.W., Lipscombe, D., Madison, D.V. (1988). Multiple types of neuronal calcium channels and their selec-tive modulation. Trends Neurosci. 11: 431–8.PubMedCrossRefGoogle Scholar
  33. Uchitel, O.D., & Protti, D.A. (1994). P-type calcium channels and transmitter release from nerve terminals. News in Physiological Sciences 9: 101–5.Google Scholar
  34. Uchitel, O.D., Protti, D.A., & Sanchez, V. (1992). P-type voltage dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses. Proc. Natl. Acad. Sci. USA 87: 3330–3.CrossRefGoogle Scholar
  35. Wang, X., Treistman, S.N., & Lemos, J.R. (1992). Two types of high-threshold calcium currents inhibited by wconotoxin in nerve terminals of rat neurohypophysis. J. of Physiol. 445: 181–99.Google Scholar
  36. Westenbroek, R.E., Hell, J.W., & Warner, C. (1992). Biochemical properties and subcellular distribution of N-type calcium channel ai subunits. Neuron 9: 1099–15.PubMedCrossRefGoogle Scholar
  37. Wheeler, D.B., Randall, A., & Tsien, R.W. (1994). Roles of N-type and Q-type Ca’+ channels in supporting hippocampal synaptic transmission. Science 264: 107–11.PubMedCrossRefGoogle Scholar
  38. Zhang, J.F., Randall, A.D., & Ellinor, P.T. (1993). Distinctive pharmacology and kinetics of cloned neuronal Ca“ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacology 32: 1075–88.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Osvaldo D. Uchitel
    • 1
  • Eleonora Katz
    • 2
  1. 1.Instituto de Biología Celular y Neurociencias “Prof. Eduardo De Robertis”Facultad de Medicina Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.Departamento de Biología Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations