Regulation of Neuronal Protein Synthesis by Calcium

  • J. R. Sotelo
  • J. M. Verdes
  • A. Kun
  • J. C. Benech
  • J. R. A. Sotelo Silveira
  • A. Calliari


Neurons are an extreme example of a cell type whose architecture must have an influence on its local metabolism. Their extremely long projections, specially when axons are considered, together with ultrastructural characteristics such as the absence of concluding evidences for the presence of ribosomes inside axons, induced neurobiologists to propose different maintenance paradigms for the different parts of the neuron. Three neuronal territories will be discussed here, a) the axon; b) the soma and dendrites; and c) the synapse. The characteristics of the axonal territory will be described first. In accordance to the widespread dogma of the absence of ribosomes in axons, axonal proteins (structural ones or those functionally destinated to membranes or nerve endings) should be synthesized in the somatic territory and conveyed after towards the axon via two different velocity transport mechanisms [0.5 to 5 mm/day and 420 mm/day, respectively (for review see Ochs, 1982)]. The possibility that the axonal territory could synthesize some of its proteins has not been generally accepted. Thus, the half-life of each cytoskeletal axonal protein should be estimated to be several times longer than the duration of their transport to the nerve endings. For instance, if we consider neurofilament proteins (Nf)—which normally are transported at a rate of lmm/day—in a 1 meter length nerve, they will arrive to the nerve endings 1000 days after their synthesis. This could mean that if the half-life of Nf is 1000 days, 50% of the Nf transported to the nerve endings will be degraded before the original bulk arrives to its destination. Even with a half life of 4000 days (about 11 years), a 1/16 of the Nf transported to the nerve endings will not arrive given that they will be degraded. The above mentioned problem have been extensively discussed by Alvarez and Torrez (1985), whom proposed that under these conditions the most peripheral portions of axons should always be partially deprived of cytoskeletal proteins. Furthermore, it is well known from Cajal’s studies (1928) that the total volume of the axonal territory in the longest axons is more than three order of magnitude greater than the somatic territory. On the other hand, the branching of axons at their ends will increase instead of diminish their total volume, increasing even more their possible hindrance. However, axons have been generally found to be homogeneously healthy throughout their length (see Alvarez and Torrez, 1985). Consequently, a local system of protein synthesis should be considered to maintain the homogeneity of axons; otherwise, some special mechanisms for protecting axonal cytoskeletal proteins from degradation must be found in axons. Thus, whether the axonal territory may synthesize at least a part of its own proteins or not, should be a main question, the answer of which—if positive—would change the point of view of a lot of normal or pathological neuronal functions which are related to protein synthesis.


Protein Synthesis Sciatic Nerve Schwann Cell Dorsal Root Ganglion Neuron Internal Store 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, J., and Benech, C. R. (1983). Axoplasmic incorporation of Amino Acids in a Myelinated Fiber Exceeds That of Its Soma: A Radioautographic Study. Exp. Neurol. 82: 25–42.PubMedCrossRefGoogle Scholar
  2. Alvarez, J., and Torres, J. C. (1985) Slow axoplasmic transport: a fiction? J. Theor. Biol. 112:627–651.PubMedCrossRefGoogle Scholar
  3. Benech, C. R., Sad, E. A., and Franchi, C. M. (1968). In Vivo Local Uptake of C-14 Orotic Acid by Peripheral Nerve. Exp. Neurol. 22: 436–443.PubMedCrossRefGoogle Scholar
  4. Benech, C., Sotelo, J. R., Menéndez, J., and Correa-Luna, R. (1982). Autoradiographic Study of RNA and Protein Synthesis in Sectioned Peripheral Nerves. Exp. Neurol. 76: 72–82.PubMedCrossRefGoogle Scholar
  5. Black, M. M., and Lasek, R. J. (1977), The presence of transfer RNA in the axoplasm of the squid giant axon. J. Neurobiol. 8: 229–237.PubMedCrossRefGoogle Scholar
  6. Bondy, S. C., Purdy, J. L. and Babitch, R. (1977). Axoplasmic transport of RNA containing a polyadenilic acid segment. Neurochem. Res. 2:407–415.CrossRefGoogle Scholar
  7. Brostrom, C. O., and Brostrom, M. A. (1990). Calcium-dependent regulation of protein synthesis in intact mammalian cells; Ann. Rev. Physiol. 52: 577–90.CrossRefGoogle Scholar
  8. Brostrom, C. O., Chin, K. V., Wong, W. L., Cade, C., and Brostrom, M. A. (1989). Inhibition of traslational initiation in eukaryotic cells by calcium ionophore. J. Biol. Chem. 254: 1641–49.Google Scholar
  9. Brostrom, M. A., Chin, K. V., Cade, C., Gmitter, D., and Brostrom, C. O. (1987). Stimulation of protein synthesis in pituitary cells by phorbol esters and cyclic AMP. Evidence for rapid induction of a component of traslational intiation. J. Biol. Chem. 262: 16515–23.PubMedGoogle Scholar
  10. Chin, K., Cade, C., Brostrom, C. O., Galuska, E. M., and Brostrom, M. A. (1987). Calcium-dependent regulation of protein synthesis at traslational initiation in eukariotic cells. J. Biol. Chem. 262: 16509–14.PubMedGoogle Scholar
  11. Chun, J. T., Gioio, A. E., Crispino, M., Giuditta, A., and Kaplan, B. B. (1995). Characterization of squid enolase mRNA: sequence analysis, tissue distribution, and axonal localization. Neurochem. Res. 20923–930.Google Scholar
  12. Contreras, G., Carrasco, O. C., and Alvarez, J. (1983). Axoplasmic incorporation of aminoacids in myelinated fibers of the cat. Exp. Neurol. 82: 581–593.PubMedCrossRefGoogle Scholar
  13. Crispino, M., Perrone-Capano, C., Kaplan, B. B., and Giuditta, A. (1995). Neurofilament proteins are synthesized in nerve endings from squid brain. J. Neurochem. 61: 1144–1146.CrossRefGoogle Scholar
  14. Dimova, R. N., and Markov, D. V. (1976). Changes in the mitochondria in the initial part of the axon during regeneration. Acta Neuropathol. (Berlin) 36: 235–242.CrossRefGoogle Scholar
  15. Edstrom, A., Edstrom, J. E., and Hokfelt, T. (1969). Sedimentation analysis of ribonucleic acid extracted from isolated Mauthner nerve fibre components. J. Neurochem. 16: 53–66.PubMedCrossRefGoogle Scholar
  16. Fawell, E. H., Boyer, I. J., and Brostrom, C. O. (1989). A novel calcium-dependent phosphorylation of a ribosomal-associated protein. J. Biol. Chem. 254: 1650–55.Google Scholar
  17. Frankel, R. D., and Koenig, E. (1977). Identification of major indigenous protein components in mammalian axons and locally synthesized axonal protein in hypoglossal nerve. Exp. Neurol. 57: 282–295.PubMedCrossRefGoogle Scholar
  18. Frankel, R. D., and Koenig, E. (1978). Identification of locally synthesized proteins in proximal stumps axons of the neurotomized hypoglossal nerve. Brain Res. 141: 67–76.PubMedCrossRefGoogle Scholar
  19. Gainer, H., Tasaki, I., and Lasek, R. J. (1977). Evidence for the glia-neuron protein transfer hypothesis from intracellular perfusion studies of squid giant axons. J. Cell Biol. 74: 524–530.PubMedCrossRefGoogle Scholar
  20. Gioio, A. E., Chun, J. T., Crispino, M., Perrone-Capano, C., Giuditta, A., and Kaplan, B. B. (1994) Kinesin mRNA is present in the squid giant axon. J. Neurochem. 63: 13–18.PubMedCrossRefGoogle Scholar
  21. Giuditta, A., Dettbarn, W. D., and Brzin, M. (1968). Protein synthesis in the isolated giant axon of the squid. Proc. Natl. Acad. Sci. USA. 59: 1284–1287.PubMedCrossRefGoogle Scholar
  22. Giuditta, A., Metafora, S., Felsani, A., and Del Rio, A. (1977). Factors for protein synthesis in the axoplasm of squid giant axon. J. Neurochem. 28: 1393–1395.PubMedCrossRefGoogle Scholar
  23. Giuditta, A., Cupello, A., and Lazzarini, G. (1980). Ribosomal RNA in the axoplasm of the squid giant axon. J. Neurochem. 34: 1757–1760.PubMedCrossRefGoogle Scholar
  24. Giuditta, A., Hunt, T., and Santella, L. (1983). Messenger RNA in squid axoplasm. Biol. Bull. 165: 526.Google Scholar
  25. Giuditta, A., Hunt, T., and Santella, L. (1986). Messenger RNA in squid axoplasm. Neurochem. Intern. 8: 435–442.CrossRefGoogle Scholar
  26. Giuditta, A., Menichini, E., Perrone-Capano, C., Langella, M., Martin, R., Castigli, E., and Kaplan, B.B. (1991) Active polysomes in the axoplasm of the squid giant axon. J. Neurosci. Res. 28: 18–28.PubMedCrossRefGoogle Scholar
  27. Hügle, B., Hazan, R., Scheer, U., and Franke, W., (1985). Localization of ribosomal protein S I in the granular component of the interphase nucleolus and its distribution during mitosis. J. Cell Biol. 100: 873–886.PubMedCrossRefGoogle Scholar
  28. Jackson, T. R., Patterson, S. I., Thastrup, O., and Hanley, M. R. (1988). A novel tumor promoter, thapsigargin, transiently increases cytoplasmic free Ca“ without generation of inositol phosphates in NG 115–401 L neuronal cells: Biochem. J. 253: 81–86.PubMedGoogle Scholar
  29. Kaplan, B. B., Gioio, A. E., Perrone-Capano, C., Crispino, M., and Giuditta, A. (1992) Beta-Actin and Beta-Tubulin are components of a heterogeneous mRNA population present in the squid giant axons. Mol. Cell Neurosci. 3: 133–144.PubMedCrossRefGoogle Scholar
  30. Kelly, B. M., Gillespie, C. S., Sherman, D. L., and Brophy, P.J., (1992). Schwann cells of the myelin-forming phenotype express neurofilament protein NF-M. J. Cell Biol. 118:397–410.PubMedCrossRefGoogle Scholar
  31. Koenig, E., (1967). Synthetic mechanisms in the axon. I. Local axonal synthesis of acetylcholinesterase. J. Neurochem. 12:343–355.CrossRefGoogle Scholar
  32. Koenig, E., (1967). Synthetic mechanisms in the axon. Ill Stimulation of acetylcholinesterase synthesis by actinomycin-D in the hypoglossal nerve. J. Neurochem. 14: 429–435.PubMedCrossRefGoogle Scholar
  33. Koenig, E. (1967). Synthetic mechanisms in the axon. IVs. In vitro incorporation of [’H]precursors into axonal protein and RNA. J. Neurochem. 14: 437–446.PubMedCrossRefGoogle Scholar
  34. Koenig, E. (1979). Ribosomal RNA in the Mauthner axon: implications for a protein synthesis machinery in the myelinated axons. Brain Res. 174: 95–107.PubMedCrossRefGoogle Scholar
  35. Koenig, E., and Adams, P. (1982). Local protein synthesis activity in axonal fields regenerating in vitro. J. Neurochem. 39: 386–400.PubMedCrossRefGoogle Scholar
  36. Koenig, E. (1989). Cycloheximide-sensitive [3’S]methionine labeling of proteins in goldfish retinal ganglion cell axons in vitro. Brain Res. 481: 119–123.PubMedCrossRefGoogle Scholar
  37. Koenig, E., and Martin, R., (1996). Cortical plaque-like structure identify ribosome-containing domains in the Mauthner cell axon. J. Neurosci. 16: 1400–1411.PubMedGoogle Scholar
  38. Kimball, S. R., and Jefferson, L. S. (1992). Regulation of protein synthesis by modulation of intracellular calcium in rat liver; Am. J. Physiol., 263 (Endocrinol. Metab. 26): E958–E964.PubMedGoogle Scholar
  39. Lasek, R. J., Gainer, H., and Barker, J. L. (1977). Cell to cell transfer of glial proteins of the squid giant axon. The glia-neuron protein transfer hypothesis. J. Cell Biol. 74: 501–523.PubMedCrossRefGoogle Scholar
  40. Lewis, S. A., and Cowan, N. J., (1985). Genetics, evolution, and expression of the 68,000-mol-wt neurofilament protein: isolation of cloned cDNA probe. J. Cell Biol. 100:843–850.PubMedCrossRefGoogle Scholar
  41. Lytton, J., Westling, M., and Hanley, M. R. (1991). Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca’’ATPase family of calcium pumps. J. Biol. Chem. 266: 17067–17071.PubMedGoogle Scholar
  42. Liu, C., and Herman, T. E. (1978). Characterization of ionomycin as a calcium ionophore. J. Biol. Chem. 253: 5892–94.PubMedGoogle Scholar
  43. Martin, R., Fritz, W., and Giuditta, A. (1989). Visualization of polyribosomes in the postsynaptic area of the squid giant synapse by electron spectroscopic imaging. J. Neurocytol. 18: 11–18.PubMedCrossRefGoogle Scholar
  44. Mohr, E., Fehr, S., and Richter, D. (1991). Axonal transport of neuropeptide encoding mRNAs within hypothalamohypophyseal tract of rats. EMBO J. 10: 2419–2424.PubMedGoogle Scholar
  45. Nairn, A. C., and Palfrey, H. C. (1987). Identification of the major Nr 100,000 substrate for calmodulin-dependent protein kinase III in mammalian cells as elongation factor-2. J. Biochem. 262: 17299–17303.Google Scholar
  46. Nelson, P. G., and Fields R. D. (1994). Calcium and Neuronal Plasticity. J. of Neurobiology 25: 219.CrossRefGoogle Scholar
  47. Ochs, S. (1982). Axoplasmic transport and its relation to other nerve functions. John Wiley and Sons, Inc. New York, USA.Google Scholar
  48. Palay, S. L., Sotelo, C., Peters, A., and Orkand, P. M., (1968) The axon hillock and the initial segment. J. Cell Biol. 38: 193–201.PubMedCrossRefGoogle Scholar
  49. Pannese, E., and Ledda, M., (1991). Ribosomes in myelinated axons of the rabbit spinal ganglion neurons. J. Submicrosc. Cytol. Pathol. 23: 33–38.PubMedGoogle Scholar
  50. Peter, J. A., Palay, S. L., and Webster, H. De F. (1970) The fine structure of the nervous system. N.Y.: Harper and Row, p. 198.Google Scholar
  51. Preston, S. F., and Berlin, R. D. (1992). An intracellular calcium store regulates protein synthesis in HeLa cells, but it is not the hormone-sensitive store. Cell Calcium 13: 303–312.PubMedCrossRefGoogle Scholar
  52. Ramon y Cajal, S., Studies on degeneration and regeneration of the nervous system, (1928). Vol. I, Translated by R. M. May. Oxford University Press, Oxford, reprinted Hafner, N. Y., 1968, p. 290.Google Scholar
  53. Rapallino, M. V., Cupello, A., and Giuditta, A. (1988). Axoplasmic RNA species synthesized in the isolated squid giant axon. Neurochem. Res. 13: 625–631.PubMedCrossRefGoogle Scholar
  54. Roberson, M. D., Toews, A. D., Goodrum, J. F., and Morell, P., (1992). Neurofilament and Tubulin mRNA expression in Schwann cells. J. Neurosci. 33: 156–162.Google Scholar
  55. Ryazanov, A. G. (1987). Calcium /calmodulin dependent phosphorilation of elongation factor 2. FEBS Letts. 214: 331–334.CrossRefGoogle Scholar
  56. Sagara, Y., and Inesi, G. (1991). Inhibition of the sarcoplasmic reticulum Cat’ transport ATPase by thapsigargin at subnanomolar range concentrations. J. Biol. Chem. 266: 13503–13506.PubMedGoogle Scholar
  57. Shyne-Athwal, S., Chakraborty, G., Gage, E., and Ingoglia, N. A. (1989). Comparison of post-translational protein modification by amino acid addition after crush injury to sciatic and optic nerves of rats. Exp. Neurol. 99: 281–295.CrossRefGoogle Scholar
  58. Singer, M.. (1966). The transport of [3H]L-histidine through the Schwann and myelin sheath into the the axon, including a reevaluation of myelin function. J. Morphol. 120: 281–293.PubMedCrossRefGoogle Scholar
  59. Skoff, R. P., and Hamberger, V., (1974). Fine structure of dendritic and axonal growth cones in embryonic chick spinal cord. J. Comp. Neurol. 153: 107–148.PubMedCrossRefGoogle Scholar
  60. Sotelo, J. R., Benech, C. R., and Kun, A. (1992). Local radiolabeling of the 68kDa neurofilament protein in rat sciatic nerves. Neurose. Letts. 144: 174–76.CrossRefGoogle Scholar
  61. Sotelo, J. R., Horie, H., Ito, S., Benech, C., Sango, K., and Takenaka, T. (1991). An in vitro model to study diabetic neuropathy. Neurose. Letts. 129: 91–94.CrossRefGoogle Scholar
  62. Steward, O., and Riback, C. E., (1986) Polyribosomes associated with synaptic specialization on axon initial segments. J. Neurosci. 6: 3079–3085.PubMedGoogle Scholar
  63. Tennyson, V. M., (1970). The fine structure of the axon and growth cone of the dorsal root neuroblast of the rabbit embryo. J. Cell Biol. 44: 62–79.PubMedCrossRefGoogle Scholar
  64. Tobias, G. S., and Koenig, E. (1975). Axonal protein synthesizing activity during the early outgrowth period followin neurotomy. Exp. Neurol. 49: 221–234.PubMedCrossRefGoogle Scholar
  65. Tobias, G. S., and Koenig, E. (1975). Influence of nerve cell body and neurilemma cells on local axonal protein synthesis following neurotomy. Exp. Neurol. 49: 235–245.PubMedCrossRefGoogle Scholar
  66. Tytell, M., and Lasek, R. J., (1984). Glial polypeptides transferred into the squid giant axon. Brain Res. 324: 223–232.PubMedCrossRefGoogle Scholar
  67. Wettstein, R., and Sotelo Sr., J. R.. (1963). Electron microscope study of the regenerative process of peripheral nerves of mice. Z. Zellforsch. 59: 708–730.PubMedCrossRefGoogle Scholar
  68. Wong, W. L., Brostrom, M. A., Kuznetsov, G., and Brostrom, C. O. (1993). Inhibition of protein synthesis and early protein processing by thapsigargin in cultured cells. Biochem. J. 289: 71–79.PubMedGoogle Scholar
  69. Zelena, J. (1970). Ribosome-like particles in myelinated axons of the rat. Brain Res. 24: 359–363.PubMedCrossRefGoogle Scholar
  70. Zelena, J. (1972). Ribosomes in myelinated axons of dorsal root ganglia. Z. Zellforsch. 124: 217–229.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • J. R. Sotelo
    • 1
  • J. M. Verdes
    • 1
    • 2
  • A. Kun
    • 1
    • 3
  • J. C. Benech
    • 1
    • 2
  • J. R. A. Sotelo Silveira
    • 1
    • 4
  • A. Calliari
    • 1
    • 2
  1. 1.Laboratorio de Proteínas & Acidos Nucleicos del Sistema Nervioso División BiofísicaInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
  2. 2.Area Biofísica, Departamento de Biología Celular y Molecular Instituto de Biociencias, Facultad de VeterinariaUniversidad de la RepúblicaMontevideoUruguay
  3. 3.Unidad Asociada Biofísica Instituto de Biología, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  4. 4.Departamento de Biología Celular Instituto de Biología, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations