Skip to main content

Plasticity in Astrocytic Phenotypes

A Role For Protein Kinase C, Tyrosine Kinases, and Cytoskeleton Signaling

  • Chapter
Book cover Brain Plasticity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 429))

Abstract

Neurons and astrocytes derive from common progenitor ectodermal cells. The neuronal progenitors actively proliferate early in development, as the development of the neural tube and the CNS vesicles progresses. Neuroblast proliferation ceases quite early, and in most species it precedes the burst of astroblastic proliferation. During the massive proliferation of neurons, astrocytes exist in small numbers and with one identifiable phenotype, namely radial glia (Cameron and Rakic, 1994). After their final mitotic division in the subventricular zone, neurons migrate, populate specific laminae in the developing brain, elaborate processes, and form functional synapses. While neurons are migrating for more precise formation of CNS layers, astroblasts proliferate, so that in the adult brain the ratio is 9 astrocytes to 1 neuron. During the course of differentiation from a glioblast to a mature astrocyte, astrocytes undergo dynamic shape-function changes. Most intermediate and differentiated phenotypes of astrocytes are characterized by expression of specific cytoskeletal proteins and the acquisition of specific shape (reviewed in Cameron and Rakic, 1991). After final positioning and cell programmed death of neurons and astrocytes, the patterning of the brain remains a very dynamic process. It now includes constant remodeling of synapses, and continuous differentiation and proliferation of astrocytes, or differentiation of neurons and oligodendrocytes.

The erratum of this chapter is available at http://dx.doi.org/10.1007/978-1-4757-9551-6_23

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baltuch, G. H., N. P. Dooley, K. M. Rostworowski, J. G. Villemure, and V. W. Yong. 1995. Protein kinase C isoforms alpha overexpression in C6 glioma cells and its role in cell proliferation. J. Neuro Oncol. 24: 241–250.

    Article  CAS  Google Scholar 

  2. Barry, S. T., and C. D.R. 1994. The RhoA-dependent assembly of focal adhesions in Swiss 3T3 cells is associated with increased tyrosine phosphorylation and the recruitment of both pp125FAK and protein kinase C-6 to focal adhesions. J. Cell Sci. 107: 2033–2045.

    PubMed  CAS  Google Scholar 

  3. Bender, A. S. J. T. Neary, J. Blicharska, L. O. Norenberg, and M. D. Norenberg. 1991. Role of calmodulin and protein kinase C in astrocytic volume regulation. J. Neurochem. 58: 1874–1882.

    Article  Google Scholar 

  4. Bignami, A., and D. Dahl. 1976. Immunofluorescence studies with antibodies to astrocyte-specific protein (GFA) in mammalian and submammalian vertebrates. Neuropathol Appl. Neurobiol. 2: 99–111.

    Article  Google Scholar 

  5. Billah, M. M., S. Eckel, T. J. Mullmann, R. W. Egan, and M. I. Siegel. 1989. Phosphatidylcholine hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide-stimulated human neutrophile. Involvement of phosphatidate phosphohydrolase in signal transduction. J. Biol. Chem. 264: 17069–77.

    PubMed  CAS  Google Scholar 

  6. Billah, M. M., J. K. Pai, T. J. Mullmann, R. W. Egan, and M. I. Siegel. 1989. Regulation of phospholipase D in HL-60 granulocytes. Activation by phorbol esters, diglyceride, and calcium ionophore via protein kinase-independent mechanisms. J. Biol. Chem. 264: 9069–76.

    PubMed  CAS  Google Scholar 

  7. Cameron, R. S., and P. Rakic. 1991. Glial cell lineage in the cerebral cortex: a review and synthesis. Glia. 4: 124–137.

    Article  PubMed  CAS  Google Scholar 

  8. Cameron, R. S., and P. Rakic. 1994. Identification of membrane proteins that comprise the plasmalemmal junction between migrating neurons and radial glial cells. J Neuroscience. 14: 3139–3155.

    CAS  Google Scholar 

  9. Chavez, R. A., r. S. Mille, and H. Moore. 1996. A biosynthetic regulated secretory pathway in constitutive secretory cells. J. Cell Biol. 1: 177–91.

    Google Scholar 

  10. Cook, S. J., and M. J. O. Wakelam. 1992. Epidermal growth factor increases sn-1,2-diacylglycerol levels and activates phospholipase D-catalysed phosphatidylcholine breakdown in Swiss 3T3 cells in the absence of inositol-lipid hydrolysis. Biochem. J. 285: 247–253.

    PubMed  CAS  Google Scholar 

  11. Exton, J. H. 1990. Signalling through phosphatidylcholine breakdown. J. Biol. Chem. 265: 1–4.

    PubMed  CAS  Google Scholar 

  12. Fanti, W., A. Muslin, A. Kikuchi, J. Martin, A. MacNicol, R. Gross, and L. Williams. 1994. Activation of Raf–I by I4–3–3 proteins. Nature. 371: 612–6I4.

    Google Scholar 

  13. Gustaysson, L., and E. Hansson. 1990. Stimulation of phospholipase D activity by phorbol esters in cultured astrocytes. J. Nearochem. 42: 737–42.

    Article  Google Scholar 

  14. Harrison, B. C., and P. L. Mobley. 1992. Phosphorylation of glial fibrillary acidic protein and vimentin by cytoskeletal-associated intermediate filament protein kinase activity in astrocytes. J. Neurochem. 58: 320–327.

    Article  PubMed  CAS  Google Scholar 

  15. Rundle, B., T. McMahon, J. Dadgar, and R. Messing. 1995. Overexpression of PKC-a enhances nerve growth factor-induced phosphorylation of mitogen-activated protein kinases and neurite outgrowth. 1. Biol. Chem. 260: 30134–30140.

    Google Scholar 

  16. Isaaks, W. B., R. K. Cook, J. C. Van Atta, C. M. Redmond, and A. B. Fulton, J. Biol. Chem., 264 17953–17960.

    Google Scholar 

  17. Assembly of vimentin in culture varies with cell types. J. Biol. Chem. 264: 17953–17960.

    Google Scholar 

  18. Janz, R., and T. Sudhof. 1995. A systematic approach to studying synaptic function in vertebrates. Cold Spring Harbor Symposia on Quantitative Biology. 60: 309–14.

    Article  PubMed  CAS  Google Scholar 

  19. Jiang, H., J. Luo, T. Urano, P. Frankel, Z. Lu, D. Foster, and L. Feig. 1995. Involvement of Ral GTPase in v-Srcinduced phospholipase D activation. Nature. 378: 409–12.

    Article  PubMed  CAS  Google Scholar 

  20. Kentroti, S., and A. Vernadakis. 1997. Differential expression in glial cells derived from chick embryo cerebral hemispheres at an advance stage of development. J. Neurosci. Res. 47: 322–331.

    Article  PubMed  CAS  Google Scholar 

  21. Kozma, R., S. Ahmed, A. Best, and L. Lim. 1995. The Ras-related Cdc42Hs and Bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell. Biol. 15: 1942–1952.

    PubMed  CAS  Google Scholar 

  22. Liscovitch, M., and C.-C. V. 1996. Enzymology of mammalian phospholipases D: in vitro studies. Chenmisty and Physics of Lipids 80. 80: 37–44.

    Article  CAS  Google Scholar 

  23. Luo, L., Hensch, T.K.,, L. Ackerman, S. Barbels, L. Y. Jan, and Y. N. Jan. 1996. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature. 379: 837–840.

    CAS  Google Scholar 

  24. Mangoura, D. 1994. PKC-dependent regulation of glia phenotypes: effects on vimentin assembly. Hitl. Devi. Neurosci. 12: 1–80.

    Article  Google Scholar 

  25. Mangoura, D. 1995. Brain Res. In press.

    Google Scholar 

  26. Mangoura, D., and G. Dawson. 1997. Programmed cell death in cortical astrocytes from chick embryo cerebral hemisphere cultures is associated with activation of protein kinase pk60 and ceramide formation. J. Neurochem.

    Google Scholar 

  27. Mangoura, D., C. Pelletiere, and G. Dawson. 1993. Astrocytic phenotype regulation by PLD and kinases in chick embryo culture. Soc. Neurosci Abstract. 28: 3: 43.

    Google Scholar 

  28. Mangoura, D., N. Sakellaridis, J. Jones, and A. Vernadakis. 1989. Early and late passage C-6 glial cell growth: similarities with primary glial cell in culture. J. Neurosci. 14: 941–947.

    CAS  Google Scholar 

  29. Mangoura, D., N. Sakellaridis, and A. Vernadakis. 1986. Factors influencing neuronal growth in primary cultures derived from 3- day-old chick embryos. Int. J. Devi. Neurosci. 6: 89–102.

    Article  Google Scholar 

  30. Mangoura, D., N. Sakellaridis, and A. Vernadakis. 1988. Cholinergic neurons in cultures derived from three, six or eight-day-old chick embryos: a biochemical and immunocytochemical study. Brain Res. 40: 25–46.

    Article  CAS  Google Scholar 

  31. Mangoura, D., N. Sakellaridis, and A. Vernadakis. 1990. Evidence for plasticity in phenotypic neurotransmitter expression in culture. Del,. Brain Res. 51: 93–101.

    Google Scholar 

  32. Mangoura, D., V. Sogos, and G. Dawson. 1993. PKC-c is a developmentally regulated, neuronal isoform inthe chick embryo CNS chick embryo. J. Neurosci. Res. 35: 488–498.

    Article  PubMed  CAS  Google Scholar 

  33. Mangoura, D., V. Sogos, and G. Dawson. 1995. Phorbol ester and PKC signalling regulate proliferation, vimentin cytoskeleton assembly and glutamine synthetase activity of chick embryo cerebrum astrocytes in culture. Brain Res. 87: 1–11.

    Article  CAS  Google Scholar 

  34. Mangoura, D., V. Sogos, C. Pelletiere, and G. Dawson. 1995. Differential regulation of phospholipases C and D by phorbol esters and the physiological activators carbachol and glutamate in astrocytes from chick embryo cerebrum and cerebellum. Brain Res. 87: 12–21.

    Article  CAS  Google Scholar 

  35. Mangoura, D., and A. Vernadakis. 1988. Gabaergic neurons in cultures derived from three, six or eight-day-old chick embryos: a biochemical and immunocytochemical study. Dee Brain Res. 40: 37–46.

    Article  CAS  Google Scholar 

  36. Martinez-Hernandez, A., K. P. Bell, and M. D. Norenberg. 1977. Glutamine-synthetase-glial localization in the brain. Science. 195: 1356–1358.

    Article  PubMed  CAS  Google Scholar 

  37. Mobley, P. L., S. L. Scott. and E. G. Cruz. 1986. Protein kinase C in astrocytes: a determinant of cell morphology. Brain Res. 398: 366–369.

    CAS  Google Scholar 

  38. Morrison-Bogorad, M., S. Pardue, D. McIntire, and E. Miller. 1994. Cell size and the heat-shock response in rat brain. Journal of Neurochemistry. 63: 857–867.

    Article  PubMed  CAS  Google Scholar 

  39. Neary, J. T. L.-O. -. B. Norenberg, and M. D. Norenberg. 1986. Calcium-activated, phospholipid-dependent protein kinase and protein substrates in primary cultures of astrocytes. Brain Res. 385: 420–424.

    Article  PubMed  CAS  Google Scholar 

  40. Nedergaard, M. 1994. Direct signalling from astrocytes to neurons in cultures of mammalian brain cell. Science. 263: 1768–1771.

    Article  PubMed  CAS  Google Scholar 

  41. Nishizuka, Y. 1995. Protein kinase C and lipid signaling for sustained cellular responses. FASFB Journal. 9: 484–96.

    CAS  Google Scholar 

  42. Oppenheim, R. 1991. Cell death during development of the nervous system. Annual Reviews of Neuroscience. 14: 453–501.

    Article  CAS  Google Scholar 

  43. Parker, K. K., M. D. Norenberg, and A. Vernadakis. 1980. `Transdifferentiation“ of C-6 glial cells in culture. Science. 208: 179–181.

    Google Scholar 

  44. Peletiere, Wang, and Mangiura. 1997.

    Google Scholar 

  45. Pelletiere, C., S. Leung, N. Sakellaridis, and D. Mangoura. 1995. Coupling of the prolactin receptor to tyrosine kinases regulate s activation of PLD, STAT9I and mitosis. Soc. Neuroscience,. 21: 562.

    Google Scholar 

  46. Rasouly, D., E. Rahamim, I. Ringel, I. Ginzburg, C. Muarakata, Y. Matsuda, and P. Lazarovici. 1994. Neurites induced by staurosporinc in PC’12 cells are resistant to colchicine and express high levels of tau proteins. Molecular Pharmacology. 45: 29–35.

    PubMed  CAS  Google Scholar 

  47. Ron, D., C. Chen, J. Caldwell, L. Jamieson, E. Orr, and D. Mochly-Rosen. 1994. Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proceeli.Natì.Acal.Sci. USA. 91: 839–843.

    Article  CAS  Google Scholar 

  48. Sakellaridis, N., D. Bau. D. Mangoura, and A. Vernadakis. 1983. Developmental profiles of glial enzyme sin the chick embryo: in vivo and in culture. Neurochem. Intern. 5: 685–689.

    Article  CAS  Google Scholar 

  49. Sakellaridis, N., Mangoura D, and V. A. 1984. Glial cell growth in culture: influence of living cell substrata. Neurochem. Res. 9: 1469–1483.

    Article  Google Scholar 

  50. Sakellaridis, N., D. Mangoura, and A. Vernadakis. 1986. Effects of neuron conditioned medium and fetal calf serum content on glial growth in dissociated cultures. Develop. Brain Res. 27: 31–41.

    Article  CAS  Google Scholar 

  51. Sakellaridis, N., D. Mangoura, and A. Vernadakis, 1986. Effects of opiates on the growth of neuron-enriched cultures from chick embryonic brain. J. Develop. Neurosci. 4: 293–303.

    Article  CAS  Google Scholar 

  52. Tsai HM, Garber BB. and L. LMH. 1981.3H-thymidine autoradiographic analysis of telencephalic histogenesis in the embryo. I Neuronal birthdays of telencephalic compartments in situ. J. Comp. Neurol. 198: 275–292.

    Google Scholar 

  53. Vernadakis, A., and D. Mangoura. 1988. Factors influencing glial growth in culture: Nutrients and cell-secreted factors. In Nutrition, Growth and Cancer. G. P. Tryfiates and K. N. Prasad, editors. Alan R. Liss, Inc., New York. 57–79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitra A. Mangoura MD, Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mangoura, D.A., Pelletiere, C., Wang, D., Sakellaridis, N., Sogos, V. (1997). Plasticity in Astrocytic Phenotypes. In: Filogamo, G., Vernadakis, A., Gremo, F., Privat, A.M., Timiras, P.S. (eds) Brain Plasticity. Advances in Experimental Medicine and Biology, vol 429. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9551-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9551-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9553-0

  • Online ISBN: 978-1-4757-9551-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics