Skip to main content

Endogenous Opioids and Prenatal Determinants of Neuroplasticity

  • Chapter
Book cover Brain Plasticity

Abstract

An endogenous opioid system involved in the growth of developing, neoplastic, renewing, and healing cells and tissues was first postulated in the early 1980’s. This concept arose from the demonstration that blockade of native opioids (i.e., enkephalins, endorphins) from opioid receptors in developing animals (Zagon and McLaughlin, 1983a,c) or tumors transplanted into mice (1983b) accelerated growth when the opioid antagonist utilized was continuously available. Such observations gave rise to the hypothesis that endogenous opioids serve as growth inhibitory molecules and function in an active, tonic fashion. At this time it also was learned that if opioids were disrupted from opioid receptors for only a short time each day, growth could be delayed. The explanation for this latter observation resided in knowledge that during the time of opioid receptor blockade there is a compensatory production of opioid peptides and receptors. During the interval when the opioid antagonist is not available, an increased concentration of peptide can interact with cells containing more receptors, and the functional sensitivity is heightened. Since opioids are growth inhibitory, the finding of suppression of development or oncogenesis was in keeping with this thesis. These defining principles set forth the hypothesis that native opioid peptides are associated with growth, in addition to the function of opioids/opioid receptors in neuromodulatory events (Akil et al., 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akil, H.; Watson, S.J.; Young, E.; Lewis, M.E.; Katchaturian, H.; Walter, J.M. 1984. Endogenous opioids: Biology and function. Annu. Rev. Neurosci. 7: 223–255.

    Google Scholar 

  • Barg, J.; Belcheva, M.; McHale, R.; Levey, R; Vogel, Z.; Coscia, C.J. 1993. (3-endorphin is a potent inhibitor of thymidine incorporation into DNA via g-and x-opioid receptors in fetal rat brain cell aggregates in culture. J. Neurochem. 60: 765–767.

    Google Scholar 

  • Bartolome, J.V.; Bartolome, M.B.; Lorber, B.A.; Dileo, S.J.; Schanberg, S.M. 1991. Effects of central administra-tion of beta-endorphin on brain and liver DNA-synthesis in preweaning rats. Neuroscience 40: 289–294.

    Article  PubMed  CAS  Google Scholar 

  • Braude, M.C.; Morrison, J.M. 1976. Preclinical toxicity studies of naltrexone. NIDA Res. Monog. 9: 16–26.

    Google Scholar 

  • Clendeninn, N.J.; Petraitis, M.; Simon, E.J. 1976. Ontogological development of opiate receptors in rodent brain. Brain Res. 118: 157–160.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, E.; Keshet, G.; Shavit, Y.; Weinstock, M. 1996. Prenatal naltrexone facilitates male sexual behavior in the rat. Pharmacol. Biochem. Behay. 54: 183–189.

    Google Scholar 

  • Coyle, J.T.; Pert, C.B. 1976. Ontogenetic development of [’H]naloxone binding in rat brain. Neuropharmacology 15: 555–560.

    Article  PubMed  CAS  Google Scholar 

  • D’Amato, F.R.; Castellano, C.; Ammassari-Teule, M.; Oliverio, A. 1988. Prenatal antagonism of stress by naltrexone administration: Early and long-lasting effects on emotional behaviors in mice. Develop. Psychobiol. 21: 283–292.

    Google Scholar 

  • De Cabo, C.; Colado, M.l.; Pujol, A.; Martin, M.I.; Viveros, M.P. 1994. Naltrexone administration effects on regional brain monamines in developing rats. Brain Res. Bull. 34: 395–406.

    Google Scholar 

  • De Cabo de la Vega, C.; Pujol, A.; Viveros, M.P. 1995. Neonatally administered naltrexone affects several behavioral responses in adult rats of both genders. Pharmacol. Biochem. Behay. 50: 277–286.

    Google Scholar 

  • Diggle, P.J.; Liang, K.Y.; Zeger, S.L. 1994. Analysis of longitudinal data. Oxford: Clarendon Press. Hall, C.S. Temperament: a survey of animal studies. Pyschol. Bull. 38: 909–943; 1941.

    Google Scholar 

  • Harry, G.J.; Rosecrans, J.A. 1979. Behavioral effects of perinatal naltrexone exposure: A preliminary investigation. Pharmacol. Biochem. Behay. 11 (Suppl.): 19–22.

    CAS  Google Scholar 

  • Hauser, K.F.; McLaughlin, P.J.; Zagon, 1.S. 1989. Endogenous opioid systems and the regulation of dendritic growth and spine formation. J. Comp. Neurol. 281: 13–22.

    Google Scholar 

  • Hetta, J.; Terenius, L. 1980. Prenatal naloxone affects survival and morphine sensitivity of rat offspring. Neurosci. Letts. 16: 323–327.

    Google Scholar 

  • Kashon, M.L.; Ward, O.B.; Grisham, W.; Ward, I.L. 1992. Prenatal (3-endorphin can modulate some aspects of sexual differentiation in rats. Behay. Neurosci. 106: 555–562.

    Google Scholar 

  • Keshet, G.I.; Weinstock, M. 1995. Maternal naltrexone prevents morphological and behavioral alterations induced in rats by prenatal stress. Pharmacol. Biochem. Behay. 50: 413–419.

    Google Scholar 

  • Knodel, E.L.; Richelson, E. 1980. Methionine-enkephalin immuno-reactivity in fetal rat brain cells in aggregating culture and in mouse neuroblastoma cells. Brain Res. 197: 565–570.

    Article  PubMed  CAS  Google Scholar 

  • Leng, G.; Mansfield, S.; Bicknell, R.J.; Dean, A.D.P.; Ingram, C.D.; Marsh, M.I.C.; Yates, J.O.; Dyer, R.G. 1985. Central opioids: A possible role in parturition? J. Endocrinol. 106: 219–224.

    Google Scholar 

  • Mayer, A.D.; Faris, P.L.; Komisaruk, B.R.; Rosenblatt, J.S. 1985. Opiate antagonism reduces placentophagia and pup cleaning by parturient rats. Pharmacol. Biochem. Behay. 22: 1035–1044.

    Google Scholar 

  • McLaughlin, P.J. 1994. Opioid antagonist modulation of rat heart development. Life Sci. 54: 1423–1431.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, P.J. 1996. Regulation of DNA synthesis of myocardial and epicardial cells in developing rat heart by [Met5]-enkephalin. Am. J. Physiol. 271: R122–R129.

    PubMed  CAS  Google Scholar 

  • McLaughlin, P.J.; Tobias, S.W.; Lang, C.M.; Zagon, I.S. 1997a. Chronic exposure to the opioid antagonist naltrexone during pregnancy: Maternal and offspring effects. Physiol. Behay., in press.

    Google Scholar 

  • McLaughlin, P.J.; Tobias, S.W.; Lang, C.M.; Zagon, I.S. 1997b. Opioid receptor blockade during prenatal life modifies postnatal behavioral development. Pharmacol. Biochem. Behay., in press.

    Google Scholar 

  • Meriney, S.D.; Ford, M.J.; Oliva, D.; Pilar, G. 1991. Endogenous opioids modulate neuronal survival in the developing avian ciliary ganglion. J. Neurosci. 11: 3705–3717.

    PubMed  CAS  Google Scholar 

  • Monder, H.; Yasukawa, N.; Christian, J.J. 1979. Perinatal naloxone: When does naloxone affect hyperalgesia? Pharmacol. Biochem. Behay. 11: 235–237.

    Google Scholar 

  • Murgo, A.J. 1985. Inhibition of B16–BL6 melanoma growth in mice by methionine-enkephalin. J. Natl. Cancer Inst. 75341–344.

    Google Scholar 

  • Najam, N.; Panksepp, J. 1989. Effect of chronic neonatal morphine and naloxone on sensorimotor and social development of young rats. Pharmacol. Biochem. Behay. 33: 539–544.

    Google Scholar 

  • Neale, J.H.; Barker, J.L.; Uhl, G.R.; Snyder, S.H. 1979. Enkephalin-containing neurons visualized in spinal cord cultures. Science 201: 467–469.

    Article  Google Scholar 

  • Nieder, G.L; Corder, C.N. 1982. Effects of opiate antagonists on early pregnancy and pseudopregnancy in mice. J. Reprod. Fert. 65: 341–346.

    Google Scholar 

  • Pfeiffer, D.G.; Nikolarakis, K.E.; Pfeiffer A. 1984. Chronic blockade of opiate receptors: Influence on reproduction and body weight in female rats. Neuropeptides 5: 279–282.

    Google Scholar 

  • Sandman, C.A.; Yessaian, N. 1986. Persisting subsensitivity of the striatal dopamine system after fetal exposure to beta-endorphin. Life Sci. 39: 1755–1763.

    Article  PubMed  CAS  Google Scholar 

  • Seatriz, J.V.; Hammer, R.P. 1993. Effects of opiates on neuronal development in the rat cerebral cortex. Brain Res. Bull. 30: 523–527.

    Google Scholar 

  • Shahabi, N.A.; Sharp, B.M. 1995. Antiproliferative effects of S opioids on highly purified CD4’ and CD8’ murine T cells. J. Pharmacol. Exp. Ther. 273: 1105–1113.

    Google Scholar 

  • Shepanek, N.A.; Smith, R.F.; Anderson, L.A.; Medici, C.N. 1995. Behavioral and developmental changes associated with prenatal opiate receptor blockade. Pharmacol. Biochem. Behay. 50: 313–319.

    Google Scholar 

  • Shepanek, N.A.; Smith, R.F.; Tyer, Z.; Royall, D.; Allen, K. 1989. Developmental, behavioral, and structural effects of prenatal opiate receptor blockade. New York Acad. Sci. 562: 377–379.

    Google Scholar 

  • Villiger, P.M.; Lotz, M. 1992. Expression of prepro-enkephalin in human articular chondrocytes is linked to cell proliferation. EMBO J. 11: 135–143.

    PubMed  CAS  Google Scholar 

  • Vorhees, C.V. 1981. Effects of prenatal naloxone exposure on postnatal behavioral development of rats. Neurobe-hay. Toxicol. Teratol. 3: 295–301.

    Google Scholar 

  • Ward, O.B.; Monaghan, E.P.; Ward, I.L. 1986. Naltrexone blocks the effects of prenatal stress on sexual behavior differentiation in male rats. Pharmacol. Biochem. Behay. 25: 573–576.

    Google Scholar 

  • Werboff, J.; Havlena, H.; Sikov, M.R. 1962. Effects of prenatal X-irradiation on activity, emotionality. and maze-learning ability in the rat. Radiat. Res. 16: 441–452.

    Google Scholar 

  • Zadina, J.E.; Kastin, A.J.; Coy, D.H.; Adinoff, B.A. 1985. Developmental, behavioral, and opiate receptor changes after prenatal or postnatal (3-endorphin, CRF, or Tyr-MI F-I. Psychoneuroendocrinology 10: 367–383.

    Google Scholar 

  • Zagon, I.S.; Hytrek, S.D.; Lang, C.M.; Smith, J.P.; McGarrity, T.J.; Wu, Y.; McLaughlin, P.J. 1996a. Opioid growth factor ([Mets]-enkephalin) prevents the incidence and retards the growth of human colon cancer. Am. J. Physiol. 271: R780–R786.

    PubMed  CAS  Google Scholar 

  • Zagon, I.S.; Hytrek, S.D.; McLaughlin, P.J. 19966. Opioid growth factor tonically inhibits human colon cancer cell proliferation in tissue culture. Am. J. Physiol. 271: R51 I–R518.

    Google Scholar 

  • Zagon, I.S.; McLaughlin, P.J. 1983a. Increased brain size and cellular content in infant rats treated with opiate antagonist. Science 221: 1179–1180.

    Article  PubMed  CAS  Google Scholar 

  • Zagon, LS., McLaughlin, P.J. 19836. Naltrexone modulates tumor response in mice with neuroblastoma. Science 221: 671–673.

    Google Scholar 

  • Zagon, I.S.; McLaughlin, P.J. 1983c. Naltrexone modulates growth in infant rats. Life Sci. 33: 2449–2454.

    Article  PubMed  CAS  Google Scholar 

  • Zagon, 1.5.; McLaughlin, P.J. 1984. Naltrexone modulates body and brain development in rats: A role for endogenous opioid systems in growth. Life Sci. 35: 2057 2064.

    Google Scholar 

  • Zagon, I.S.; McLaughlin, P.J. I985a. Naltrexone’s influence on neurobehavioral development. Pharmacol. Biochem. Behay. 22: 441–448.

    Google Scholar 

  • Zagon, I.S.; McLaughlin, P.J. 1985b. Opioid antagonist-induced regulation of organ development. Physiol. Behay. 34: 507–511.

    Google Scholar 

  • Zagon, I.S.; McLaughlin. P.J. 1989. Naloxone modulates body and organ growth of rats: Dependency on the duration of opioid receptor blockade and stereospecificity. Pharmacol. Biochem. Behay. 33: 325–328.

    Google Scholar 

  • Zagon, I.S.; McLaughlin, P.J. 1991a. The role of endogenous opioids and opioid receptors in human and animal cancers. In: Plotnikoff, N.P.; Murgo, A.J.; Faith, R.E.; Wybran, J., eds. Stress and Immunity, Caldwell, NJ: CRC, pp. 343–356.

    Google Scholar 

  • Zagon, I.S.; McLaughlin, P.J. 1991b. Identification of opioid peptides regulating proliferation of neurons and glia in the developing nervous system. Brain Res. 542: 318–323.

    Article  PubMed  CAS  Google Scholar 

  • Zagon, I.S.; McLaughlin, P.J. 1993. Opioid growth factor receptor in the developing nervous system. In: Zagon, 1.S.; McLaughlin, P.J., eds. Receptors in the Developing Nervous System. Growth Factors and Hormones. Volume 1. London: Chapman and Hall, pp. 39–62.

    Chapter  Google Scholar 

  • Zagon, I.S.; McLaughlin, P.J.; Thompson, C.I. 1979. Development of motor activity in young rats following perinatal methadone exposure. Pharmacol. Biochem. Behay. 10: 743–749.

    Google Scholar 

  • Zagon, I.S.; Sassani, J.W.; McLaughlin, P.J. 1995. Opioid growth factor modulates corneal epithelial outgrowth in tissue culture. Am. J. Physiol. 268: R942–R950.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zagon, I.S., Tobias, S.W., McLaughlin, P.J. (1997). Endogenous Opioids and Prenatal Determinants of Neuroplasticity. In: Filogamo, G., Vernadakis, A., Gremo, F., Privat, A.M., Timiras, P.S. (eds) Brain Plasticity. Advances in Experimental Medicine and Biology, vol 429. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9551-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9551-6_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9553-0

  • Online ISBN: 978-1-4757-9551-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics