Endogenous Opioids and Prenatal Determinants of Neuroplasticity

  • Ian S. Zagon
  • Steven W. Tobias
  • Patricia J. McLaughlin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 429)


An endogenous opioid system involved in the growth of developing, neoplastic, renewing, and healing cells and tissues was first postulated in the early 1980’s. This concept arose from the demonstration that blockade of native opioids (i.e., enkephalins, endorphins) from opioid receptors in developing animals (Zagon and McLaughlin, 1983a,c) or tumors transplanted into mice (1983b) accelerated growth when the opioid antagonist utilized was continuously available. Such observations gave rise to the hypothesis that endogenous opioids serve as growth inhibitory molecules and function in an active, tonic fashion. At this time it also was learned that if opioids were disrupted from opioid receptors for only a short time each day, growth could be delayed. The explanation for this latter observation resided in knowledge that during the time of opioid receptor blockade there is a compensatory production of opioid peptides and receptors. During the interval when the opioid antagonist is not available, an increased concentration of peptide can interact with cells containing more receptors, and the functional sensitivity is heightened. Since opioids are growth inhibitory, the finding of suppression of development or oncogenesis was in keeping with this thesis. These defining principles set forth the hypothesis that native opioid peptides are associated with growth, in addition to the function of opioids/opioid receptors in neuromodulatory events (Akil et al., 1984).


Opioid Receptor Opioid Peptide Prenatal Stress Endogenous Opioid Opioid Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akil, H.; Watson, S.J.; Young, E.; Lewis, M.E.; Katchaturian, H.; Walter, J.M. 1984. Endogenous opioids: Biology and function. Annu. Rev. Neurosci. 7: 223–255.Google Scholar
  2. Barg, J.; Belcheva, M.; McHale, R.; Levey, R; Vogel, Z.; Coscia, C.J. 1993. (3-endorphin is a potent inhibitor of thymidine incorporation into DNA via g-and x-opioid receptors in fetal rat brain cell aggregates in culture. J. Neurochem. 60: 765–767.Google Scholar
  3. Bartolome, J.V.; Bartolome, M.B.; Lorber, B.A.; Dileo, S.J.; Schanberg, S.M. 1991. Effects of central administra-tion of beta-endorphin on brain and liver DNA-synthesis in preweaning rats. Neuroscience 40: 289–294.PubMedCrossRefGoogle Scholar
  4. Braude, M.C.; Morrison, J.M. 1976. Preclinical toxicity studies of naltrexone. NIDA Res. Monog. 9: 16–26.Google Scholar
  5. Clendeninn, N.J.; Petraitis, M.; Simon, E.J. 1976. Ontogological development of opiate receptors in rodent brain. Brain Res. 118: 157–160.PubMedCrossRefGoogle Scholar
  6. Cohen, E.; Keshet, G.; Shavit, Y.; Weinstock, M. 1996. Prenatal naltrexone facilitates male sexual behavior in the rat. Pharmacol. Biochem. Behay. 54: 183–189.Google Scholar
  7. Coyle, J.T.; Pert, C.B. 1976. Ontogenetic development of [’H]naloxone binding in rat brain. Neuropharmacology 15: 555–560.PubMedCrossRefGoogle Scholar
  8. D’Amato, F.R.; Castellano, C.; Ammassari-Teule, M.; Oliverio, A. 1988. Prenatal antagonism of stress by naltrexone administration: Early and long-lasting effects on emotional behaviors in mice. Develop. Psychobiol. 21: 283–292.Google Scholar
  9. De Cabo, C.; Colado, M.l.; Pujol, A.; Martin, M.I.; Viveros, M.P. 1994. Naltrexone administration effects on regional brain monamines in developing rats. Brain Res. Bull. 34: 395–406.Google Scholar
  10. De Cabo de la Vega, C.; Pujol, A.; Viveros, M.P. 1995. Neonatally administered naltrexone affects several behavioral responses in adult rats of both genders. Pharmacol. Biochem. Behay. 50: 277–286.Google Scholar
  11. Diggle, P.J.; Liang, K.Y.; Zeger, S.L. 1994. Analysis of longitudinal data. Oxford: Clarendon Press. Hall, C.S. Temperament: a survey of animal studies. Pyschol. Bull. 38: 909–943; 1941.Google Scholar
  12. Harry, G.J.; Rosecrans, J.A. 1979. Behavioral effects of perinatal naltrexone exposure: A preliminary investigation. Pharmacol. Biochem. Behay. 11 (Suppl.): 19–22.Google Scholar
  13. Hauser, K.F.; McLaughlin, P.J.; Zagon, 1.S. 1989. Endogenous opioid systems and the regulation of dendritic growth and spine formation. J. Comp. Neurol. 281: 13–22.Google Scholar
  14. Hetta, J.; Terenius, L. 1980. Prenatal naloxone affects survival and morphine sensitivity of rat offspring. Neurosci. Letts. 16: 323–327.Google Scholar
  15. Kashon, M.L.; Ward, O.B.; Grisham, W.; Ward, I.L. 1992. Prenatal (3-endorphin can modulate some aspects of sexual differentiation in rats. Behay. Neurosci. 106: 555–562.Google Scholar
  16. Keshet, G.I.; Weinstock, M. 1995. Maternal naltrexone prevents morphological and behavioral alterations induced in rats by prenatal stress. Pharmacol. Biochem. Behay. 50: 413–419.Google Scholar
  17. Knodel, E.L.; Richelson, E. 1980. Methionine-enkephalin immuno-reactivity in fetal rat brain cells in aggregating culture and in mouse neuroblastoma cells. Brain Res. 197: 565–570.PubMedCrossRefGoogle Scholar
  18. Leng, G.; Mansfield, S.; Bicknell, R.J.; Dean, A.D.P.; Ingram, C.D.; Marsh, M.I.C.; Yates, J.O.; Dyer, R.G. 1985. Central opioids: A possible role in parturition? J. Endocrinol. 106: 219–224.Google Scholar
  19. Mayer, A.D.; Faris, P.L.; Komisaruk, B.R.; Rosenblatt, J.S. 1985. Opiate antagonism reduces placentophagia and pup cleaning by parturient rats. Pharmacol. Biochem. Behay. 22: 1035–1044.Google Scholar
  20. McLaughlin, P.J. 1994. Opioid antagonist modulation of rat heart development. Life Sci. 54: 1423–1431.PubMedCrossRefGoogle Scholar
  21. McLaughlin, P.J. 1996. Regulation of DNA synthesis of myocardial and epicardial cells in developing rat heart by [Met5]-enkephalin. Am. J. Physiol. 271: R122–R129.PubMedGoogle Scholar
  22. McLaughlin, P.J.; Tobias, S.W.; Lang, C.M.; Zagon, I.S. 1997a. Chronic exposure to the opioid antagonist naltrexone during pregnancy: Maternal and offspring effects. Physiol. Behay., in press.Google Scholar
  23. McLaughlin, P.J.; Tobias, S.W.; Lang, C.M.; Zagon, I.S. 1997b. Opioid receptor blockade during prenatal life modifies postnatal behavioral development. Pharmacol. Biochem. Behay., in press.Google Scholar
  24. Meriney, S.D.; Ford, M.J.; Oliva, D.; Pilar, G. 1991. Endogenous opioids modulate neuronal survival in the developing avian ciliary ganglion. J. Neurosci. 11: 3705–3717.PubMedGoogle Scholar
  25. Monder, H.; Yasukawa, N.; Christian, J.J. 1979. Perinatal naloxone: When does naloxone affect hyperalgesia? Pharmacol. Biochem. Behay. 11: 235–237.Google Scholar
  26. Murgo, A.J. 1985. Inhibition of B16–BL6 melanoma growth in mice by methionine-enkephalin. J. Natl. Cancer Inst. 75341–344.Google Scholar
  27. Najam, N.; Panksepp, J. 1989. Effect of chronic neonatal morphine and naloxone on sensorimotor and social development of young rats. Pharmacol. Biochem. Behay. 33: 539–544.Google Scholar
  28. Neale, J.H.; Barker, J.L.; Uhl, G.R.; Snyder, S.H. 1979. Enkephalin-containing neurons visualized in spinal cord cultures. Science 201: 467–469.CrossRefGoogle Scholar
  29. Nieder, G.L; Corder, C.N. 1982. Effects of opiate antagonists on early pregnancy and pseudopregnancy in mice. J. Reprod. Fert. 65: 341–346.Google Scholar
  30. Pfeiffer, D.G.; Nikolarakis, K.E.; Pfeiffer A. 1984. Chronic blockade of opiate receptors: Influence on reproduction and body weight in female rats. Neuropeptides 5: 279–282.Google Scholar
  31. Sandman, C.A.; Yessaian, N. 1986. Persisting subsensitivity of the striatal dopamine system after fetal exposure to beta-endorphin. Life Sci. 39: 1755–1763.PubMedCrossRefGoogle Scholar
  32. Seatriz, J.V.; Hammer, R.P. 1993. Effects of opiates on neuronal development in the rat cerebral cortex. Brain Res. Bull. 30: 523–527.Google Scholar
  33. Shahabi, N.A.; Sharp, B.M. 1995. Antiproliferative effects of S opioids on highly purified CD4’ and CD8’ murine T cells. J. Pharmacol. Exp. Ther. 273: 1105–1113.Google Scholar
  34. Shepanek, N.A.; Smith, R.F.; Anderson, L.A.; Medici, C.N. 1995. Behavioral and developmental changes associated with prenatal opiate receptor blockade. Pharmacol. Biochem. Behay. 50: 313–319.Google Scholar
  35. Shepanek, N.A.; Smith, R.F.; Tyer, Z.; Royall, D.; Allen, K. 1989. Developmental, behavioral, and structural effects of prenatal opiate receptor blockade. New York Acad. Sci. 562: 377–379.Google Scholar
  36. Villiger, P.M.; Lotz, M. 1992. Expression of prepro-enkephalin in human articular chondrocytes is linked to cell proliferation. EMBO J. 11: 135–143.PubMedGoogle Scholar
  37. Vorhees, C.V. 1981. Effects of prenatal naloxone exposure on postnatal behavioral development of rats. Neurobe-hay. Toxicol. Teratol. 3: 295–301.Google Scholar
  38. Ward, O.B.; Monaghan, E.P.; Ward, I.L. 1986. Naltrexone blocks the effects of prenatal stress on sexual behavior differentiation in male rats. Pharmacol. Biochem. Behay. 25: 573–576.Google Scholar
  39. Werboff, J.; Havlena, H.; Sikov, M.R. 1962. Effects of prenatal X-irradiation on activity, emotionality. and maze-learning ability in the rat. Radiat. Res. 16: 441–452.Google Scholar
  40. Zadina, J.E.; Kastin, A.J.; Coy, D.H.; Adinoff, B.A. 1985. Developmental, behavioral, and opiate receptor changes after prenatal or postnatal (3-endorphin, CRF, or Tyr-MI F-I. Psychoneuroendocrinology 10: 367–383.Google Scholar
  41. Zagon, I.S.; Hytrek, S.D.; Lang, C.M.; Smith, J.P.; McGarrity, T.J.; Wu, Y.; McLaughlin, P.J. 1996a. Opioid growth factor ([Mets]-enkephalin) prevents the incidence and retards the growth of human colon cancer. Am. J. Physiol. 271: R780–R786.PubMedGoogle Scholar
  42. Zagon, I.S.; Hytrek, S.D.; McLaughlin, P.J. 19966. Opioid growth factor tonically inhibits human colon cancer cell proliferation in tissue culture. Am. J. Physiol. 271: R51 I–R518.Google Scholar
  43. Zagon, I.S.; McLaughlin, P.J. 1983a. Increased brain size and cellular content in infant rats treated with opiate antagonist. Science 221: 1179–1180.PubMedCrossRefGoogle Scholar
  44. Zagon, LS., McLaughlin, P.J. 19836. Naltrexone modulates tumor response in mice with neuroblastoma. Science 221: 671–673.Google Scholar
  45. Zagon, I.S.; McLaughlin, P.J. 1983c. Naltrexone modulates growth in infant rats. Life Sci. 33: 2449–2454.PubMedCrossRefGoogle Scholar
  46. Zagon, 1.5.; McLaughlin, P.J. 1984. Naltrexone modulates body and brain development in rats: A role for endogenous opioid systems in growth. Life Sci. 35: 2057 2064.Google Scholar
  47. Zagon, I.S.; McLaughlin, P.J. I985a. Naltrexone’s influence on neurobehavioral development. Pharmacol. Biochem. Behay. 22: 441–448.Google Scholar
  48. Zagon, I.S.; McLaughlin, P.J. 1985b. Opioid antagonist-induced regulation of organ development. Physiol. Behay. 34: 507–511.Google Scholar
  49. Zagon, I.S.; McLaughlin. P.J. 1989. Naloxone modulates body and organ growth of rats: Dependency on the duration of opioid receptor blockade and stereospecificity. Pharmacol. Biochem. Behay. 33: 325–328.Google Scholar
  50. Zagon, I.S.; McLaughlin, P.J. 1991a. The role of endogenous opioids and opioid receptors in human and animal cancers. In: Plotnikoff, N.P.; Murgo, A.J.; Faith, R.E.; Wybran, J., eds. Stress and Immunity, Caldwell, NJ: CRC, pp. 343–356.Google Scholar
  51. Zagon, I.S.; McLaughlin, P.J. 1991b. Identification of opioid peptides regulating proliferation of neurons and glia in the developing nervous system. Brain Res. 542: 318–323.PubMedCrossRefGoogle Scholar
  52. Zagon, I.S.; McLaughlin, P.J. 1993. Opioid growth factor receptor in the developing nervous system. In: Zagon, 1.S.; McLaughlin, P.J., eds. Receptors in the Developing Nervous System. Growth Factors and Hormones. Volume 1. London: Chapman and Hall, pp. 39–62.CrossRefGoogle Scholar
  53. Zagon, I.S.; McLaughlin, P.J.; Thompson, C.I. 1979. Development of motor activity in young rats following perinatal methadone exposure. Pharmacol. Biochem. Behay. 10: 743–749.Google Scholar
  54. Zagon, I.S.; Sassani, J.W.; McLaughlin, P.J. 1995. Opioid growth factor modulates corneal epithelial outgrowth in tissue culture. Am. J. Physiol. 268: R942–R950.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ian S. Zagon
    • 1
  • Steven W. Tobias
    • 2
  • Patricia J. McLaughlin
    • 1
  1. 1.Department of Neuroscience and AnatomyThe Pennsylvania State University The M.S. Hershey Medical CenterHersheyUSA
  2. 2.Department of Comparative MedicineThe Pennsylvania State University The M.S. Hershey Medical CenterHersheyUSA

Personalised recommendations