Skip to main content

Steroid and Protein Regulators of Glial Cell Proliferation

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 429))

Abstract

Normal development, differentiation and proliferation of tissues and cell types within multicellular organisms are stringently regulated by a complex combination of environmental factors that include systemic steroid and protein hormones, local and systemic acting growth factors, extracellular matrix components and cell-cell interactions. In most tissues, cell differentiation is accompanied by an arrest of proliferation and the maintenance of the growth arrested state is controled by specific hormonal signals which inhibit the expression or activity of growth stimulatory factors and/or induce growth suppressor gene products (Aaronson, 1991). However, for certain physiological processes, cell proliferation is neccessary to maintain populations of specific cell types. For instance, stem cells in the bone marrow provide a continuous source of hematopoietic cells in animals (Zipori, 1992). Quiescent cells will proliferate during tissue regeneration in a damaged organ, such in the liver (Fausto and Weber, 1993), whereas mammary epithelial cells are hormonally stimulated to proliferate during pregnancy and lactation (Ceriani, 1974). Finally, glial proliferation in response to brain neuronal damage has been well documented (Landis, 1994). The maintenance of these cells in the proliferative state, or the triggering of quiescent cells to proliferate, requires the selective stimulation of growth stimulatory gene products and/or suppression of growth inhibitory gene products.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson S.A. 1991. Growth factors and cancer, Science 254: 1146.

    Article  PubMed  CAS  Google Scholar 

  • Alexander D.B., Goya L., Webster M.K., Haraguchi T. and Firestone G.L. 1993. Glucocorticoids coordinately disrupt a transforming growth factor alpha autocrine loop and suppress the growth of 13762NF-derived Con8 rat mammary adenocarcinoma cells, Cancer Research 53: 1816.

    PubMed  Google Scholar 

  • Barres B.A., Raff M.C., Gaese F., Bartke I., Dechant G. and Barde Y.-A. 1994. A crucial role for neurotrophin-3 in oligodendrocyte development. Nature 367: 371–375.

    Article  PubMed  CAS  Google Scholar 

  • Bazan J.F. 1989. A novel family of growth factor receptors: a common binding domain in the growth hormone, prolactin, erythropoietin and IL-6 receptors, and the p75 IL-2 receptor beta-chain, Biochem. Biophys. Res. Commun. 164: 788.

    Article  CAS  Google Scholar 

  • Berns E.M., Schuurmans A.L., Bolt J., Lamb D.J., Foekens J.A. and Mulder E. 1990. Antiproliferative effects of suramin on androgen responsive tumour cells, Fur. J. Cancer 26: 470.

    Google Scholar 

  • Brodie C. and Vemadakis A. 1991. Muscle-derived factors induce proliferation and astrocytic phenotypic expression in C6 glial cells. Glia 4: 269.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter G. 1992. Receptor tyrosine kinase substrates: src homology domains and signal transduction, FASEB J. 6: 3283.

    PubMed  CAS  Google Scholar 

  • Ceriani R.C. 1974. Proceedings: hormones and other factors controlling growth in the mammary gland: a review, J. Invest. Derm. 63: 93.

    Article  PubMed  CAS  Google Scholar 

  • Fausto N. and Weber E.M. 1993. Mechanisms of growth regulation in liver regeneration and hepatic carcinogenesis, Progress in liver diseases 11: 115.

    PubMed  CAS  Google Scholar 

  • Firestone G.L., Maiyar A.C. and Ramos R.A. 1995. Steroid and protein regulators of normal and abnormal cell proliferation, in Hormones and Aging, Eds. P.S. Timiras, W.D. Quay and A. Vemadakis, pp. 325–359.

    Google Scholar 

  • Fridovich K.J., Hansen L.J., Keyomarsi K. and Pardee A.B. 1990. Progression through the cell cycle: an overview, Am. Rev. Resp. Dis. S3.

    Google Scholar 

  • Goya L., Alexander D.B., Webster M.K., Kern F.G., Guzman R.C., Nandi S. and Firestone G.L. 1993a. Overexpression of transforming growth factor alpha overrides the glucocorticoid-mediated suppression of Con8 mammary tumor cell growth in vitro and in vivo, Cancer Res. 53: 1816.

    PubMed  CAS  Google Scholar 

  • Goya L., Maiyar A.C., Ge Y. and Firestone G.L. 1993b. Glucocorticoids induce a GI/GO cell cycle arrest of Con8 rat mammary tumor cells that is synchronously reversed by steroid withdrawal or addition of transforming growth factor-alpha, Mol. Endocrinol. 7: 1121.

    Google Scholar 

  • Goya L., Rivero F. and Pascual-Leone A.M. 1995. Stress, glucocorticoids and aging, in Hormones and Aging, Eds. P.S. Timiras, W.D. Quay and A. Vernadakis, pp. 249–264.

    Google Scholar 

  • Goya L., Feng P-T., Aliabadi S. and Timiras P.S. 1996. Effect of growth factors on the in vitro growth and differentiation of early and late C6 glioma cells, Int. J. Devl. Neuroscience 14: 409–417.

    Google Scholar 

  • Haraguchi T., Alexander D.B., King D.S., Edwards C.P. and Firestone G.L. 1991. Identification of the glucocorticoìd suppressible mitogen from rat hepatoma cells as an angiogenic platelet-derived growth factor A-chain homodimer, J. Biol. Chem. 266: 18299.

    Google Scholar 

  • Hung W.C., Chuang L.Y., Tsai J.H. and Chang C.C. 1993. Effects of insulin on TGF-beta I-induced cell growth inhibition in the human hepatoma cell lines, Biochem. Mol. Biol. Int. 30: 655.

    Google Scholar 

  • Hunter T. and Karin M. 1992. The regulation of transcription by phosphorylation, Cell 70: 375.

    Article  PubMed  CAS  Google Scholar 

  • Kiess W., Lee L., Graham D.E., Greenstein L., Tseng L.Y., Richler M.M. and Nissely S.P. 1989. Rat C6 glial cells synthesize insulin-like growth factor (1GF-I) and express IGF-1 receptors and IGF-II/mannose 6-phosphate receptors. Endocrinology 124: 1727.

    Article  PubMed  CAS  Google Scholar 

  • Koch C.A., Anderson D., Moran M.F., Ellis C. and Pawson T. 1991. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins, Science 252: 668.

    Article  PubMed  CAS  Google Scholar 

  • Landis D.M.D. 1994. The early reactions of non-neuronal cells to brain injury. Annu. Rev. Neurosci. 17: 133–51.

    Article  PubMed  CAS  Google Scholar 

  • Lee K., Kentroti S. and Vernadakis A. 1992. Comparative biochemical, morphological and immunocytochemical studies between C6 glial cells of early and late passages and advanced passages of glial cells derived from aged mouse cerebral hemispheres. Glia 6: 245–257.

    Article  PubMed  CAS  Google Scholar 

  • Lowe W.L., Meyer T., Karpen C.W. and Lorentzen L.R. 1992. Regulation of insulin-like growth factor I production in rat C6 glioma cells: possible role as an autocrine/paracrine growth factor. Endocrinology 130: 2683.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Hernandez A., Bell K.P. and Norenberg M.D. 1977. Glutamine synthetase-glial localization in the brain. Science 195: 1356.

    Article  PubMed  CAS  Google Scholar 

  • Massague J. 1992. Receptors for the TGF-beta family, Cell 69: 1067.

    Article  PubMed  CAS  Google Scholar 

  • Morrison R.S. and De Vellis J. 1981. Growth of purified astrocytes in chemically defined medium, Proc. Natl. Acad. Sci. USA 78: 7205.

    Article  PubMed  CAS  Google Scholar 

  • Noble M., Murray K., Stroobant P., Waterfield M.D. and Riddle P. 1988. Platelet-derived growth factor promoted division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell, Nature 333: 556.

    Article  Google Scholar 

  • Pardee A.B. 1989. G1 events and regulation of cell proliferation, Science 246: 603.

    Article  PubMed  CAS  Google Scholar 

  • Parker K.K., Norenberg M.D. and Vernadakis A. 1980. Transdifferentiation of C6 glial cells in culture, Science 208: 179.

    Article  PubMed  CAS  Google Scholar 

  • Pines J. 1993. Arresting developments in cell-cycle control, Trends Biochem. Sci. 19: 143.

    Google Scholar 

  • Poduslo S.E. 1975. The isolation and characterization of a plasma membrane and myelin fraction derived from oligodendroglia of calf brain, J. Neurochem. 24: 647.

    PubMed  CAS  Google Scholar 

  • Pruss R.M., Bartlett P.F., Gavridovic J., Lisak R.P. and Rattray S. 1982. Mitogens for glial cells: a comparison of the response of cultured astrocytes, oligodendrocytes and Schwann cells, Devel. Brain Res. 2: 19.

    Google Scholar 

  • Raff M.C., Abney E.R. and Fok-Seang J. 1985. Reconstitution of a developmental clock in vitro: a critical role for astrocytes in the timing of oligodendrocyte differentiation, Cell 42: 61.

    Article  PubMed  CAS  Google Scholar 

  • Raff M.C., Lilien L.E., Richardson W.D., Burne J.F. and Noble M. 1988. Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture, Nature 333: 562.

    Article  PubMed  CAS  Google Scholar 

  • Raff M.C., Miller R.H. and Noble M. 1983. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on the culture medium. Nature 274: 813.

    Google Scholar 

  • Reul J. and De Kloet E.R. 1985. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation, Endocrinology 117: 2505.

    Article  PubMed  CAS  Google Scholar 

  • Richardson W.D., Pringle N., Mosleuy M.J., Westermark R. and Dubois-Dalcq M. 1988. A role for platelet-derived growth factor in normal gliogenesis in the central nervous system, Cell 53: 310.

    Article  Google Scholar 

  • Richardson W.D., Raff M. and Noble M. 1990. The oligodendrocyte-type-2 astrocyte lineage, Semin. Neurosci. 2: 451.

    Google Scholar 

  • Ross M.E. 1996. Cell division and the nervous system: regulating the cycle from neural differentiation to death. Trends Neurosci. 19: 62–68.

    Article  PubMed  CAS  Google Scholar 

  • Sakellaridis N., Mangoura D. and Vernadakis A. 1984. Glial cell growth in culture: influence of living cell substrata, Neurochem. Res. 9: 1477.

    Google Scholar 

  • Sanchez I., Goya L., Vallerga A.K. and Firestone G.L. 1993. Glucocorticoids reversibly arrest rat hepatoma cell growth by inducing an early GI block in cell cycle progression, Cell Growth Differ. 4: 215.

    PubMed  CAS  Google Scholar 

  • Sherr C.J. 1993. Mammalian GI cyclins, Cell 73: 1059.

    Article  PubMed  CAS  Google Scholar 

  • Simon M.I., Strathmann M.P. and Gautam N. 1991. Diversity of G proteins in signal transduction, Science 252: 802.

    Article  PubMed  CAS  Google Scholar 

  • Simpson D.L., Morrison R., De Vellis J. and Herschman J.R. 1982. Epidermal growth factor binding and mitogen activity on purified populations of cells from the central nervous system, J. Neurosci. Res. 8: 453.

    Google Scholar 

  • Thomas G. 1992. MAP kinase by any other name smells just as sweet, Cell 68: 3.

    Article  PubMed  CAS  Google Scholar 

  • Truss M. and Beato M. 1993. Steroid hormone receptors: interaction with deoxyribonucleoic acid and transcription factors, Endocr. Rev. 14: 459.

    CAS  Google Scholar 

  • Ullrich A. and Schlessinger J. 1990. Signal transduction by receptors with tyrosine kinase activity, Cell 61: 203.

    Article  PubMed  CAS  Google Scholar 

  • Vernadakis A., Lee K., Kentroti S. and Brodie C. 1992. Role of astrocytes in aging: late passage primary mouse brain astrocytes and C6 glial cells as models, Prog. Brain Res. 94: 391.

    Google Scholar 

  • Vielkind U., Walencewicz A., Levine J.M. and Churchill-Bohn M. 1990. Type Il glucocorticoid receptors are expressed in olygodendrocytes and astrocytes, J. Neurosci. Res. 27: 360.

    Google Scholar 

  • Williams L.T. 1989. Signal transduction by the platelet-derived growth factor receptor, Science 243: 1564.

    Article  PubMed  CAS  Google Scholar 

  • Zipori D. 1992. The renewal and differentiation of hematopoietic stem cells, FASEB J. 6: 2691.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goya, L. (1997). Steroid and Protein Regulators of Glial Cell Proliferation. In: Filogamo, G., Vernadakis, A., Gremo, F., Privat, A.M., Timiras, P.S. (eds) Brain Plasticity. Advances in Experimental Medicine and Biology, vol 429. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9551-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9551-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9553-0

  • Online ISBN: 978-1-4757-9551-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics