Skip to main content

Is Increased Neurotoxicity a Burden of the Ageing Brain?

  • Chapter
Brain Plasticity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 429))

Abstract

Our living environment is a melting pot for more than 4.5 million natural and synthetic chemicals, which an individual may come in contact with at any given time: only 10,100 of them have been described in the Merck Index (11th Ed., 1989). It is now thought that a lifetime’s continuous exposure to trace amounts of endogenously formed and/or environmental toxins (such as industrial chemicals, pesticides, food additives, or abused and therapeutic drugs), may provoke neuronal degenerative events such as those occurring in Parkinson’s and other diseases (Barbeau et al., 1987; Schoenberg et al., 1987a; Tanner, 1989; Koller et al., 1990; Calne, 1991; see Dawson et al., 1995). A process, in other words, similar to the continuous gnawing of small wood-worms which can lead to the destruction of even huge pieces of furniture. Epidemiologic and experimental evidence supports this hypothesis. In industrialized countries, during the last 100 years, there has been an unequivocal lengthening of the life expectancy of individuals, accompanied by a dramatic increase in the rate of neurodegenerative Parkinson’s and Alzheimer’s diseases (Lilienfeld et al., 1990; Rajput, 1992). Meanwhile, the threshold age for the onset of Parkinsonism has fallen (Schoenberg, 1987b; Tanner, 1989). On the other hand, in the developing countries less likely to suffer from environmental pollution, the incidence of Parkinson’s disease is much lower (Schoenberg, 1987b), and Alzheimer’s dementia is actually absent in Nigeria (Osuntokun et al., 1991). It is true that an increase in the average age, and thus the greater number of vulnerable individuals, may play an important role in increasing the incidence of neurodegenerative diseases in developed countries. While the existence of a clear correlation has been demonstrated between neuropathies and exposure to selected environmental toxicants (Barbeau et al., 1987; Rajput et al., 1987; Schoenberg, 1987a: Tanner, 1989; Calne, 1991; Semchuk et al., 1992; Dawson et al., 1995), there is only controversial evidence that genetic factors may help neurotoxicity (Golbe, 1990; Rajput, 1992; Vieregge, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.D., Klaidman, L.K. & Leung, A.C. MPP+ and MPDP+ induced oxygen radical formation with mitochondria) enzymes. Free Radical Biol.Med. 15, 181–186 (1993).

    Article  CAS  Google Scholar 

  • Ali, S.F., David, S.N., Newport, G.D., Cadet, J.L. & Slikker, W. MPTP-induced oxidative stress and neurotoxicity are age-dependent: evidence from measures of reactive oxygen species and striatal dopamine levels. Synapse 18, 27–34 (1994).

    Google Scholar 

  • Amenta, F., Zaccheo, D. & Collier, W.L. Neurotransmitters, neuroreceptors and aging. Mech.Ageing.Devl. 61, 249–273 (1991).

    Article  CAS  Google Scholar 

  • Ando, S. & Tanaka, Y. Synaptic membrane aging in the central nervous system. Gerontology 36 (SI), 10–14 (1990).

    Article  PubMed  Google Scholar 

  • Bagchi, S.P. Trace dosages of the neurotoxins MPTP and MPP+ may affect brain dopamine in vivo. Life Sci. 51, 389–396 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Bannon, M.I., Poosch, M.S., Xia, Y., Goebbel, DJ., Cassin, B. & Kapatos. G. Dopamine transporter mRNA content in human substantia nigra decreases precipituously with age. Proc.Natl.Acad.Sci. USA 89, 7095–7099 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Barbeau, A., Roy, M., Bernier, G. et al. Ecogenetics of Parkinson’s disease: prevalence and environmental aspects in rural areas. C’an.J.Neurol.Sci. 14, 36–48 (1987).

    PubMed  CAS  Google Scholar 

  • Borowsky, B. & Hoffman, B.J. Neurotransmitter transporters: molecular biology, function, and regulation. Int.RecNeurohiol. 38, 139–199 (1995).

    CAS  Google Scholar 

  • Breese, G.R. & Taylor, T.D. Effects of 6-hydroxydopamine on brain norepinephrine and dopamine: evidence of selective degeneration of catecholamine neurons. J.Pharmacol.Exp.Ther. 174, 413–420 (1970).

    PubMed  CAS  Google Scholar 

  • Caine, D.B. Neurotoxins and degeneration in the central nervous system. Neurotoxicology 12, 335–340 (1991).

    Google Scholar 

  • Carlsson, A. & Winblad, D.B. Influence of age and time interval between death and autopsy on dopamine and 3-methoxytyramine levels in human basal ganglia. J.Neural Transm. 38, 271–276 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Collins, M. A possible neurochemical mechanism for brain and nerve damage associated with chronic alcoholism. Trends Pharmacol.Sci. 3, 373–375 (1982).

    Article  CAS  Google Scholar 

  • Darchen, F., Scherman, D. & Henry, J.-P. Reserpine binding to chromaffin granules suggests the existence of two conformations of the monoamine transporter. Biochemistry 28, 1692–1697 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Dawson, R. Jr., Beal, M.F., Bondy, S.C., Di Monte, D.A. & Isom, G.E. Excitotoxins, aging, and environmental neurotoxins: implications for understanding human neurodegenerative diseases. Toxicol.Appl.Pharntacol. 134, 1–17 (1995).

    Article  CAS  Google Scholar 

  • Del Zompo, M., Piccardi, M.P., Ruiu, S., Quartu, M., Gessa, G.L. & Vaccari, A. Selective MPP+ uptake into synaptic dopamine vesicles: possible involvement in MPTP toxicity. BI:J.Pharmacol. 109, 411–414 (1993).

    Article  Google Scholar 

  • Desai, V.G., Feuers, R.J., Hart, R.W. & Ali, S.F. MPP+-induced neurotoxicity in mouse is age-dependent: evidence by the selective inhibition of complexes of electron transport. Brain Res. 715, 1–8 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Dobrev, D., Bergsträsser, E., Fischer, H.-D. & Andreas, K. Restriction and functional changes of dopamine release in rat striatum from young adult and old rats. Mech.Ageing Devl. 80, 107–119 (1995).

    Article  CAS  Google Scholar 

  • Edwards, R.H. Neural degeneration and the transport of neurotransmitters. Ann.Neurol. 34, 638–643 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Emerich, D.F., McDermott, P., Krueger, P. et al. Locomotion of aged rats: relationship to neurochemical but not morphologic changes in nigrostriatal dopaminergic neurons. Brain Res.Bull. 32, 477–486 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Erickson, J.D., Schäfer, M.K.-H., Bonner, T.I., Eiden, L.E. & Weihe, E. Distinct pharmacological properties and distribution in nervous and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc.Natl.Acad.Sci.USA 93, 5166–5171 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Finnegan, K.T., Irwin, I., Delanney, L.E. & Langston, J.W. Age-dependent effects of the 2’-methyl analog of Imethyl-4-phenyl-1,2,3,6-tetrahydropyridine: prevention by inhibitors of monoamine oxidase-B. J.Pharmocol.Exp.Ther. 273, 716–720 (1995).

    CAS  Google Scholar 

  • Forster, M.J., Dubey, A., Dawson, K.M., Stutts, W.A., Lai, H. & Sohal, R.S. Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Pmc.Natl.Acad.Sci.USA 93, 4765–4769 (1996).

    Article  CAS  Google Scholar 

  • Golbe, L.I. The genetics of Parkinson’s disease: a reconsideration. Neurology 40 (S3) 7–14 (1990).

    PubMed  Google Scholar 

  • Gupta, M., Gupta, B.K., Thomas, R., Bruemmer, V., Sladek, J.R. & Felten, D.L. Aged mice arc more sensitive to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine than young adults. Neurosci.Lett. 70, 326–331 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Henry, J.-P. & Seherman, D. Radioligands of the vesicular monoamine transporter and their use as markers of monoamine storage vesicles. Biochem.Pharmacol. 38, 2395–2404 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Huang, R.-L., Wang, C.-T., Tai, M.-Y., Tsai, Y.-F. & Peng, M.-Y. Effects of age on dopamine release in the nucleus aecumbens and amphetamine-induced locomotor activity in rats. Neurosci.Lett. 200, 61–64 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Hyde, C.E. & Bennett, B.A. Similar properties of fetal and adult amine transporters in the rat brain. Brain Res. 646, 118–123 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Irwin, I., Ricaurte, G.A., Delanney, L.E. & Langston, J.W. The sensitivity of nigro-striatal dopamine neurons to MPP` does not increase with age. Neurosci.Lett. 87, 51–56 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Irwin, I., Finnegan, K.T., Delanney, L.E., Di Monte, D. & Langston, J.W. The relationships between aging, monoamine oxidase, striatal dopamine and the effects of MPTP in C57BL/6 mice: a critical reassessment. Brain Res. 572, 224–231 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Jarvis, M.F. & Wagner, G.C. Age-dependent effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neuropharmacology 24, 581–583 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Johannessen, J.N. A model of chronic neurotoxicity: long-term retention of the neurotoxin 1-methyl-4-phenylpyridinium (MPP`) within catecholaminergic neurons. Neurotoxicologr 12, 285–302 (1991).

    CAS  Google Scholar 

  • Johnson, R.G. Jr. Accumulation of biological amines into chromaffin granules: a model for hormone and neurotransmitter transport. Physiol.Rev. 68, 232–307 (1988).

    PubMed  CAS  Google Scholar 

  • Jonec, V. & Finch, C.E. Senescence and noradrenaline uptake by subcellular fractions of the C57BL/6J male mouse brain. Brain Res. 91, 197–203 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Kabuto, H., Yokoi, I., Mori, A., Murakami, M. & Sawada, S. Neurochemical changes related to ageing in the senescence-accelerated mouse brain and the effect of chronic administration of nimodipine. Mech.Ageing Devi. 80, 1–9 (1995).

    Article  CAS  Google Scholar 

  • Koller, W., Vetere-Overfield, B., Gray, C. et al. Environmental risk factors in Parkinson’s disease. Neurology 40, 1218–1221 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Langston, J.W., Irwin, I. & Delanney, L.E. The biotransformation of MPTP and disposition of MPP’: the effects of aging. Life Sci. 40, 749–754 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Lilienfeld, D., Chan, E., Ehland, J. et al. Two decades of increasing mortality from Parkinson’s disease among the US elderly. Arch.Neurol. 47, 731–734 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Peter, D., Roghani, A., Schuldiner, S., Privé, G.G., Eisenberg, D., Brecha, N. & Edwards, R.H. A cDNA that suppresses MPP+ toxicity encodes a vesicular monoamine transporter. Cell 70, 539–551 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z., Stafstrom, C.E., Sarkisian, M., Tandon, P., Yang, Y., Hori, A. & Holmes, G.L. Age-dependent effects of glutamate toxicity in the hippocampus. Devl.Brain Res. 97, 178–184 (1996).

    Article  CAS  Google Scholar 

  • Makino, Y., Ohta, S., Tachikawa, O. & Hirobe, M. Presence of tetrahydroisoquinoline and 1-methyl-tetrahydroisoquinoline in foods: compounds related to Parkinson’s disease. Life Sci. 43, 373–378 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Milgram, N.W., Racine, R.J., Nellis, P., Mendonca, A. & Ivy, G.O. Maintenance on L-deprenyl prolongs life in aged male rats. Life Sci. 47, 415–420 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Myers, R.D. Isoquinolines, beta-carbolines and alcohol drinking: involvement of opioid and dopaminergic mechanisms. Experientia 45, 436–443 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Nakano, M. & Mizuno, T. Age-related changes in the metabolism of neurotransmitters in rat striatum: a microdialysis study. Mech.Ageing Devl. 86, 95–104 (1996).

    Article  CAS  Google Scholar 

  • Naudon, L., Raisman-Vozari, R., Edwards, R.H., Leroux-Nicolet, L, Peter, D., Liu, Y. & Costentin, J. Reserpine affects differentially the density of the vesicular monoamine transporter and dihydrotetrabenazine binding sites. Eur.J.Neurosci. 8, 842–846 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Osterburg, H.H., Donahue, H.G., Severson, J.A. & Finch, C.E. Catecholamine levels and turnover during aging in brain regions of male C57BL/6J mice. Brain Res. 224, 337–352 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Osuntokun, B.O., Ogunniyi, A.O., Lekwauka, G.U. et al. Epidemiology of age-related dementias in the third-world and etiologic clues of Alzheimer’s disease. Tropical Geogr.Med. 43, 345–351 (1991).

    CAS  Google Scholar 

  • Pradhan, S.N. Central neurotransmitters and aging. Life Sci. 26, 1643–1656 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Rajput, A.H. Epidemiology of Parkinson’s disease. Can.J.Neurol.Sci. 11S, 154–161 (1984).

    Google Scholar 

  • Rajput, A.H., Uitti, R.G., Stern, W. et al. Geography, drinking water chemistry, pesticides and herbicides and the etiology of Parkinson’s disease. Can.J.Neurol.Sci. 14, 414–418 (1987).

    PubMed  CAS  Google Scholar 

  • Rajput, A.H. Frequency and cause of Parkinson’s disease. Can.J.Neurol.Sci. 19, 103–107 (1992).

    PubMed  CAS  Google Scholar 

  • Ramsay, R.R., Krueger, M.J., Youngster, S.K. & Singer, T.P. Evidence that the inhibition sites of the neurotoxic amine 1-methyl-4-phenylpyridinium (MPP*) and the respiratory chain inhibitor piericidin A are the same. Biochem.J., 273, 481–484 (1991).

    PubMed  CAS  Google Scholar 

  • Reinhard, J.F. Jr., Carmichael, S.W. & Daniels, A.J. Mechanisms of toxicity and cellular resistance to I-methy1–4phenyl-1,2,3,6-tetrahydropyridine and I-methyl-4-phenyl-pyridinium in adrenomedullary chromaffin cell cultures.J.Neurochem. 55, 311–320 (1990).

    Article  CAS  Google Scholar 

  • Ricaurte, G.A., Irwin, I., Forno, L.S., Delanney, L.E., Langston, E.B. & Langston, J.W. Aging and I-methyl-4phenyl-1,2,3,6-tetrahydropyridine-induced degeneration of dopaminergic neurons in the substantia nigra. Brain Res. 403, 43–51 (1987a).

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte, G.A., Delanney, L.E., Irwin, I. & Langston, J.W. Older dopaminergic neurons do not recover from the effects of MPTP. Neuropharmacology 26, 97–99 (1987b).

    Google Scholar 

  • Riekkinen, P. Jr., Riekkinen, M., Valjakka, A., Riekkinen, P. & Sirviö, J. DSP-4, a noradrenergic neurotoxin, produces more severe biochemical and functional deficits in aged than young rats. Brain Res. 570, 293–299 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Riekkinen, M., Aroviita, L., Kivipelto, M., Taskila, K. & Riekkinen, P. Jr. Depletion of serotonin, dopamine and noradrenaline in aged rats decreases the therapeutic effect of nicotine, but not of tetrahydroaminoacridine. Eur.J.Phafmacol. 308, 243–250 (1996).

    Article  CAS  Google Scholar 

  • Ross, S.B. Long-term effects of N-2-chloroethyl-N-ethyl-2-bromobenzylamine hydrochloride on noradrenergic neurones in the rat brain and heart. BrJ.Pharmacol. 58, 521–527 (1976).

    Article  CAS  Google Scholar 

  • Rothstein, J.D., Jin, L., Dykes-Hoberg, M. & Kuncl, R.W. Chronic inhibition of glutamate uptake provides a model of slow neurotoxicity. Proc.Natl.Acad.Sci.GSA 90, 6591–6595 (1993).

    Article  CAS  Google Scholar 

  • Saransaari, P. & Oja, S.S. Age-related changes in the uptake and release of glutamate and aspartate in the mouse brain. Mech.Ageing Devl. 81, 61–71 (1995).

    Article  CAS  Google Scholar 

  • Scherman, D., Raisman, R., Ploska, A. & Agid, Y. [3H]Dihydrotetrabenazine, a new in vitro monoaminergic probe for human brain. J.Neurochem. 50. 1131–1136 (1988)

    Google Scholar 

  • Scherman, D., Desnos, C., Darchen, F., Pollak, P., Javoy-Agid, F. & Agid, Y. Striatal dopamine deficiency in Parkinson’s disease: role of aging. Ann.Neurol. 26, 551–557 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Schoenberg, B.S. Environmental risk factors for Parkinson’s disease: the epidemiologic evidence. Can.J.Neurol.Sci. 14, 407–413 (1987a).

    PubMed  CAS  Google Scholar 

  • Schoenberg, B.S. Descriptive epidemiology of Parkinson’s disease: disease distribution and hypothesis formulation. Adv. Neurol. 45, 277–283 (1987b).

    PubMed  CAS  Google Scholar 

  • Semchuk, K.M., Love, E.J. & Lee, R.G. Parkinson’s disease and exposure to agricultural work and pesticide chemicals. Neurology 42, 1328–1335 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Simantov, R. Neurotransporters: regulation, involvement in neurotoxicity, and the usefulness of antisense nucleic acids. Biochem.Pharmacol. 50, 435–442 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Sirviö, J., Riekkinen, P. Jr., Valjakka, A., Jolkkonen, J. & Riekkinen, P.J. The effects of noradrenergic neurotoxin, DSP-4, on the performance of young and aged rats in spatial navigation task. Brain Res. 563, 297–302 (1991).

    Article  PubMed  Google Scholar 

  • Slivka, A. & Cohen, G. Hydroxyl radical attack on dopamine. J.Biol.Chem. 260, 15466–15472 (1985).

    PubMed  CAS  Google Scholar 

  • Tanner, C.M. The role of environmental toxins in the etiology of Parkinson’s disease. Trends Neurosci. 12, 49–54 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Tipton, K.F. & Singer, T.P. Advmces in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J.Nelrochem. 61, 1191–1206 (1993).

    Google Scholar 

  • Vaccari, A. High-affinity binding of [31–1]-tyramine in the central nervous system. BrJ.Pharmacol. 89, 15–25 (1986).

    Article  CAS  Google Scholar 

  • Vaccari, A. The tyramine binding site in the central nervous system: An overview. Neurochern.Res. 18. 861–868 (1993).

    Article  CAS  Google Scholar 

  • Vaccari, A. & Gessa, G.L. [31–1]Tyramine binding: a comparison with neuronal [3H]dopamine uptake and [31-]mazindol binding processes. Neurochem.Res. 14, 949–955 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Vaccari, A., Del Zompo, M., Melis, F., Gessa, G.L. & Rossetti, Z.L. Interaction of l-methyl-4-phenylpyridinium ion and tyramine with a site putatively involved in the striatal vesicular release of dopamine. BrJ.Pharmacol. 104, 573–574 (1991).

    Article  CAS  Google Scholar 

  • Vaccari, A., Saba, P.L., Gessa, G.L. & Del Zompo, M. Differential interaction of I-methyl-4-phenylpyridinium ion with the putatively vesicular binding site of [3H]tyramine in dopaminergic and nondopaminergic brain regions. J.Neurochem. 60, 758–760 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Vaccari, A. & Saba, P.L. The tyramine-labelled vesicular transporter for dopamine: a putative target of pesticides and neurotoxins. Eur.J.Pharmacol.(ETPS) 202, 309–314 (1995).

    Google Scholar 

  • Vaccari, A., Saba, P.L., Ruiu, S., Collu, M. & Devoto, P. Disulfiram and diethyldithiocar-bamate intoxication affects the storage and release of striatal dopamine. Toxicol.Appl.Pharmacol. 139, 102–108 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Vieregge, P. Genetic factors in the etiology of idiopathic Parkinson’s disease. J.Neural Transco. (P-D Sect.) 8, 1–37 (1994).

    Article  CAS  Google Scholar 

  • Vingerhoets, F.J., Snow, B.J., Tetrud, J.W., Langston, J.W., Schulzer, M. & Caine, D.B. Positron emission tomographic evidence for progression of human MPTP-induced dopaminergic lesions. Ann.Neurol. 36, 765–770 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Walsh, S.L. & Wagner, G.C. Age-dependent effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): correlation with monoamine oxidase B. Synapse 3, 308–314 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Wustmann, C., Schmidt, J., Ihle, W., Gross, J. & Fischer, H.-D. Dopamine release from striatum slices of rats at different age: influence of hypoxia. Biomed.Biochem.Acta 42, 265–273 (1983).

    CAS  Google Scholar 

  • Zelnik, N., Angel, I., Paul, S.M. & Kleinman, J.E. Decreased density of human striatal dopamine uptake sites with age. Eur.J.Pharmacol. 126, 175–176 (1986).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vaccari, A., Saba, P., Mocci, I., Ruiu, S. (1997). Is Increased Neurotoxicity a Burden of the Ageing Brain?. In: Filogamo, G., Vernadakis, A., Gremo, F., Privat, A.M., Timiras, P.S. (eds) Brain Plasticity. Advances in Experimental Medicine and Biology, vol 429. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9551-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9551-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9553-0

  • Online ISBN: 978-1-4757-9551-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics