Robust Performances Control Design for a High Accuracy Calibration Device

  • M. Milanese
  • G. Fiorio
  • S. Malan


This chapter presents a case study of robust performances control design. The physical plant under examination consists of a platform for calibration of high accuracy accelerometers. It has to assume the properties of an inertial body, despite the vibrations coming from the surrounding ground. Plant modeling and parameter estimation, control system design and robustness analysis of the designed controllers are described and discussed. Besides a simplified model of the plant (the nominal model) perturbations are also considered to take into account parametric and dynamic uncertainties. The procedure followed for estimating model parameters, based on an unknown but bounded approach, is illustrated, and uncertainty intervals of parameter estimates are provided. Bounds of unstructured uncertainty are also derived from results of simulations to evaluate the main effects of the unmodeled dynamics.

The design has been carried on through iterative steps of “nominal” design and robustness analysis. The design has been performed through H synthesis, based on the nominal model and taking into account the main performance specifications required for the present case study, i.e. stability, disturbance attenuation and command power limitation. The robustness analysis has been performed using recent techniques able to deal with frequency domain specifications and with mixed non-linear parametric and dynamic perturbation, as required in the present case study.


Nominal Model Robustness Analysis Uncertainty Interval Present Case Study Disturbance Attenuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Dorato and R. K. Yedavally, eds., Recent Advances in Robust Control, IEEE Press (1990).Google Scholar
  2. 2.
    M. Milanese, R. Tempo, and A. Vicino, eds., Robustness in Identification and Control, Plenum Press, New York (1989).zbMATHGoogle Scholar
  3. 3.
    M. K. H. Fan, A. L. Tits, and J. C. Doyle, IEEE Trans. on Autom. Control AC-36, 25 (1991).MathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Milanese, G. Fiorio, S. Malan, and A. Vicino, in: Robust Control (S. P. Bhattacharya and L. Keel, eds.) CRC Press, Boca Raton (1991).Google Scholar
  5. 5.
    G. Fiorio, S. Malan, M. Milanese, and A. Vicino, in: Proc. 29th IEEE Conference on Decision and Control, Honolulu (1990).Google Scholar
  6. 6.
    F. C. Schweppe, Uncertain Dynamic Systems, Prentice-Hall, Englewood Cliffs, NJ (1973).Google Scholar
  7. 7.
    M. Milanese and A. Vicino, Automatica 27, 997 (1991); M. Milanese and A. Vicino, in: Bounding Approaches to System Identification (M. Milanese et al. eds.) Springer Science+Business Media New York, Chap. 2 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    G. Belforte and M. Milanese in: Proc. 1st IASTED Symp. Modeling, Identification and Control, Davos, Switzerland (1981), pp. 222–228.Google Scholar
  9. 9.
    M. Milanese and G. Belforte, IEEE Trans. on Autom. Control AC-27, 408 (1982).MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Milanese and R. Tempo, IEEE Trans, on Autom. Control AC-30, 730 (1985).MathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Milanese and A. Vicino, Automatica 25, 403 (1991).MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Ferro, Progetto Assistito da Calcolatore di un Sistema di Controllo Robusto H sulla Base di Specifiche Classiche, Tesi di Laurea, Politecnico di Torino, Torino, Italy (1992).Google Scholar
  13. 13.
    R. R. E. de Gaston and M. G. Safonov, IEEE Trans, on Autom. Control AC-33, 156 (1988).CrossRefGoogle Scholar
  14. 14.
    D. D. Siljak, IEEE Trans. on Autom. Control AC-34, 674 (1989).MathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Vicino, A. Tesi, and M. Milanese, IEEE Trans. on Autom. Control AC-35, 845 (1990).MathSciNetGoogle Scholar
  16. 16.
    A. Vicino and M. Milanese, in: Control of Uncertain Systems (D. Hinrichsen and B. Martensson, eds.) Birkäuser, Boston, MA (1990).Google Scholar
  17. 17.
    M. Malan, M. Milanese, M. Taragna, and J. Garloff, in: Proc. 31st IEEE Conference on Decision and Control, Tucson, AZ, pp. 128-133 (1992).Google Scholar
  18. 18.
    H. Chapellat and S. P. Bhattacharyya, IEEE Trans. on Automatic Control AC-34, 306 (1989).MathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Tesi and A. Vicino, Proc. International Workshop on Robust Control CRC Press, San Antonio, TX. pp. 403–416 (1991).Google Scholar
  20. 20.
    M. Milanese, M. Taragna, A. Trisoglio, and S. Malan, in: Robustness of Dynamic Systems with Parametric Uncertainties (M. Mansour, S. Balemi, and W. Truol, eds.) Birkhauser, Boston, MA pp. 211–213 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • M. Milanese
    • 1
  • G. Fiorio
    • 1
  • S. Malan
    • 1
  1. 1.Dipartimento di Automatica e InformaticaPolitecnico di TorinoTorinoItaly

Personalised recommendations