System Identification for H-Robust Control Design

  • T. J. J. van den Boom
  • A. A. H. Damen


In conventional identification techniques a model is proposed which is supposed to be capable of representing the process behavior under study. Parameters are then tuned such that the model outputs correspond according to some criterion for the dominant part of a measured data set. Deviations are thought to be concentrated in some error source in the model, such as output error, prediction error, equation error, and so forth. This artificial error source explains all disturbances acting on the process as well as for all model deviations from the real dynamic behavior of the process. Furthermore, stochastic assumptions have to be proposed concerning the errors leading to the criterion and as a result a “best” model is produced together with some stochastically based range for the parameters and/or dynamic behavior.


Model Error Uncertainty Region Weighting Filter True Process Robust Control Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Doyle and G. Stein, IEEE Trans. Autom. Control AC-26, 4 (1981).CrossRefGoogle Scholar
  2. 2.
    J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Systems, MacMillan Publishing Company, New York (1992).Google Scholar
  3. 3.
    G. C. Goodwin and M. E. Salgado, Int. J. Adapt. Control Signal Proc. 3, 333 (1989).zbMATHCrossRefGoogle Scholar
  4. 4.
    M. Gevers, Proceedings of the 9th IFAC/IFORS Symposium on Identification and System Parameter Estimation, Budapest, Hungary, pp. 1-10 (1991).Google Scholar
  5. 5.
    Y.-C. Zhu, Int. J. Control 49, 2241 (1989).zbMATHGoogle Scholar
  6. 6.
    B. Wahlberg and L. Ljung, in: Proceedings of the European Control Conference, Grenoble, France (1991).Google Scholar
  7. 7.
    A.J. Helmicki, C. A. Jacobsen, and C.N. Nett, IEEE Trans. Autom. Control AC-36, 1163 (1991).CrossRefGoogle Scholar
  8. 8.
    R. O. LaMaire, L. Valavani, M. Athans, and G. Stein, Automatica 27, 23 (1991).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    G. Gu and P. P. Khargonekar, Automatica 2, 229 (1992).Google Scholar
  10. 10.
    T. J. J. van den Boom, M. H. Klompstra, and A. A. H. Damen, Proceedings of the 9th 1FAC/IFORS Symposium on Identification and System Parameter Estimation, Budapest, Hungary, pp. 1431-1436 (1991).Google Scholar
  11. 11.
    T. J. J. van den Boom, System Identification of MIMO-Systems for H Robust Control: Technical Report, CUED/F-INFENG/TR.88, Cambridge University, Cambridge, U.K. (1991).Google Scholar
  12. 12.
    T. J. J. van den Boom, in: Proc. ACC, Chicago, IL pp. 1248-1252 (1992).Google Scholar
  13. 13.
    T. J. J. van den Boom, MIMO System Identification for H Robust Control: A Frequency Domain Approach with Minimum Error Bounds, Ph.D. thesis, Eindhoven University of Technology, The Netherlands (1993).Google Scholar
  14. 14.
    T. J. J. van den Boom, in: Proceedings of the 12th IFAC World Congress, Sydney, Australia (1993).Google Scholar
  15. 15.
    J. B. Cruz Jr., J. S. Freudenberg, and D. P. Looze, IEEE Trans. Autom. Control AC-26, 66 (1981).CrossRefGoogle Scholar
  16. 16.
    G. J. Balas, J. C. Doyle, K. Glover, A. Packard, and R. Smith, μ Analysis and Synthesis Toolbox (μ-tools): Matlab Functions for the Analysis and Design of Robust Control Systems, version 1.0a. The Math Works Inc., Natick, Mass. (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • T. J. J. van den Boom
    • 1
  • A. A. H. Damen
    • 2
  1. 1.Department of Electrical EngineeringDelft University of TechnologyDelftThe Netherlands
  2. 2.Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations