Estimation Theory for Nonlinear Models and Set Membership Uncertainty

  • M. Milanese
  • A. Vicino

Abstract

This chapter studies the problem of estimating a given function of a vector of unknowns, called the problem element, by using measurements depending non-linearly on the problem element and affected by unknown but bounded noise. Assuming that both the solution sought and the measurements depend polynomially on the unknown problem element, a method is given to compute the axis-aligned box of minimal volume containing the feasible solution set, i.e., the set of all unknowns consistent with the actual measurements and the given bound on the noise. The center of this box is a point estimate of the solution, which enjoys useful optimality properties. The sides of the box represent the intervals of possible variation of the estimates. Important problems, like parameter estimation of exponential models, time series prediction with ARMA models and parameter estimates of discrete time state space models, can be formalized and solved by using the developed theory.

Keywords

Global Solution Estimation Problem ARMA Model Uncertainty Interval Problem Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Milanese, in: Robustness in Identification and Control (M. Milanese, R. Tempo, and A. Vicino, eds.) Plenum Press, New York (1989).CrossRefGoogle Scholar
  2. 2.
    F. C. Schweppe, Uncertain Dynamic Systems, Prentice-Hall, Englewood Cliffs, NJ (1973).Google Scholar
  3. 3.
    M. Milanese and G. Belforte, IEEE Trans. Autom. Control AC-27, 408 (1982).MathSciNetCrossRefGoogle Scholar
  4. 4.
    J. F. Traub and H. Wozniakowski, A General Theory of Optimal Algorithms, Academic Press, New York (1980).MATHGoogle Scholar
  5. 5.
    C. A. Micchelli and T. J. Rivlin, Optimal Estimation in Approximation Theory (C. A. Micchelli and T. J. Rivlin, eds.) Plenum, New York, pp. 1–54 (1977).Google Scholar
  6. 6.
    B. Z. Kacewicz, M. Milanese, R. Tempo, and A. Vicino, Systems and Control Letters 8, 161 (1986).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    M. Milanese, R. Tempo, and A. Vicino, J. Complexity 2, 78 (1986).MathSciNetCrossRefGoogle Scholar
  8. 8.
    E. Fogel and F. Huang, Automatica 18, 140 (1982).MathSciNetCrossRefGoogle Scholar
  9. 9.
    J. P. Norton, Automatica 23, 497 (1987).MATHCrossRefGoogle Scholar
  10. 10.
    G. Belforte and B. Bona, in: Proc. 7th IFAC Symp. on Identification and System Parameter Estimation, York, pp. 1507-1511 (1985).Google Scholar
  11. 11.
    M. Milanese and R. Tempo, IEEE Trans. Automat. Contr. AC-30, 730 (1985).MathSciNetCrossRefGoogle Scholar
  12. 12.
    T. Clement and S. Gentil, Math. and Comput. in Simulation 30, 257 (1988).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    G. Belforte and M. Milanese, in: Proc. 1st IASTED Symp. Modelling, Identification and Control, Davos, Switzerland, pp. 75–79 (1981).Google Scholar
  14. 14.
    M. K. Smit, Measurement 1, 181 (1983).CrossRefGoogle Scholar
  15. 15.
    E. Walter and H. Piet-Lahanier, in: Proc. 25th Conf. on Decision and Control, Athens, Greece (1986).Google Scholar
  16. 16.
    P. M. Pardalos and J. B. Rosen, Constrained Global Optimization, Springer-Verlag, Berlin, Germany (1987).MATHCrossRefGoogle Scholar
  17. 17.
    P. J. M. van Laarhoven and E. H. Aarts, Simulated Annealing: Theory and Applications, Reidel Publishing Company (1987).Google Scholar
  18. 18.
    K. Godfrey, Compartmental Models and Their Applications, Academic Press, New York (1983).Google Scholar
  19. 19.
    J. G. Ecker, SIAM Review 1, 339 (1980).MathSciNetGoogle Scholar
  20. 20.
    J. E. Falk, Global Solutions of Signomial Programs, Tech. Rep. T-274, George Washington Univ., Washington, DC (1973).Google Scholar
  21. 21.
    R. M. Soland, Management Science 17, 759 (1971).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • M. Milanese
    • 1
  • A. Vicino
    • 2
  1. 1.Dipartimento di Automatica e InformaticaPolitecnico di TorinoTorinoItaly
  2. 2.Facoltà di IngegneriaUniversità degli Studi di SienaSienaItaly

Personalised recommendations