Advertisement

Robust Identification and Prediction for Nonlinear State-Space Models with Bounded Output Error

  • K. J. Keesman

Abstract

An important application of mathematical models is prediction of the future system behavior. Due to incomplete system knowledge as well as errors in the observations obtained from the “real” system, these models will always contain some uncertainty. Hence, for the credibility of model predictions, it is desirable to quantify the prediction uncertainty. From this point of view, a single future trajectory suggest an unrealistic reliability.

Keywords

Modeling Uncertainty Output Prediction Prediction Uncertainty System Parameter Estimation Future System Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. R. Barmish and J. Sankaran, IEEE Trans. Autom. Control 24, 346 (1979).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    K. Fedra, G. van Straten, and M.B. Beck, Ecol. Model. 13, 87 (1981).CrossRefGoogle Scholar
  3. 3.
    M. Milanese and R. Tempo, IEEE Trans. Autom. Control 30, 730 (1985).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    A. Vicino, R. Tempo, R. Genesio, and M. Milanese, J. Forecast. 3, 313 (1987).CrossRefGoogle Scholar
  5. 5.
    R. Tempo, B. R. Barmish and J. Trujillo, in: Proceedings of the 8th IFAC Symposium on Identification and System Parameter Estimation, Beijing, P.R. China, pp. 821-825 (1988).Google Scholar
  6. 6.
    K. J. Keesman and G. van Straten, Int. J. Control 49, 2259 (1989).zbMATHGoogle Scholar
  7. 7.
    K. J. Keesman and G. van Straten, Water Resour. Res. 26, 2643 (1990).Google Scholar
  8. 8.
    J. P. Norton, Automatica 23, 497 (1987).zbMATHCrossRefGoogle Scholar
  9. 9.
    E. Walter and H. Piet-Lahanier, Math. Comput. Simul. 32, 449 (1990).MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Milanese and A. Vicino, Automatica 27, 997 (1991).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    G. Belforte and M. Milanese, in: Proceedings of the 1st IASTED Symposium on Modeling, Identification and Control, Davis, Switzerland, pp. 75–79 (1981).Google Scholar
  12. 12.
    H. Lahanier, E. Walter, and R. Gomeni, J. Pharmacokin. Biopharm. 15, 203 (1987).CrossRefGoogle Scholar
  13. 13.
    K. J. Keesman and G. van Straten, in: Proceedings of the IAWPRC Symposium on Systems Analysis in Water Quality Management, pp. 297–308, Pergamon Press, Oxford (1987).Google Scholar
  14. 14.
    K. J. Keesman, Math. Comput. Simul. 32, 535 (1990).MathSciNetCrossRefGoogle Scholar
  15. 15.
    J. P. Norton and S. M. Veres, in: Proceedings of the 9th IFAC Symposium on Identification and System Parameter Estimation, Budapest, Hungary, pp. 363-368 (1991).Google Scholar
  16. 16.
    M. Milanese and A. Vicino, Automatica 27, 403 (1991).MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    L. Jaulin and E. Waller, Automatica 29, 1053 (1993).zbMATHCrossRefGoogle Scholar
  18. 18.
    K. J. Keesman, Envirometrics 6, 445 (1995).CrossRefGoogle Scholar
  19. 19.
    A.B. Kurzhanski, Identification—A Theory of Guaranteed Estimates, Working Paper, WP-88-55, IIASA, Laxenburg, Austria, p. 78 (1988).Google Scholar
  20. 20.
    G. van Straten and K. J. Keesman, J. Forecasting 10, 163 (1991).CrossRefGoogle Scholar
  21. 21.
    K. J. Keesman. in: Upper Error Bound Selection in Bounded Parameter Estimation, Proceedings of the 10th IFAC Symposium on System Identification, Copenhagen, Denmark (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • K. J. Keesman
    • 1
  1. 1.Department of Agricultural Engineering and PhysicsUniversity of WageningenWageningenThe Netherlands

Personalised recommendations