Advertisement

Errors-in-Variables Models in Parameter Bounding

  • V. Cerone

Abstract

When all observed variables of a model are affected by noise, parameter estimation is known as the errors-in-variables problem. While parameter bounding methods and algorithms have been extensively developed in the case of exactly known regressor variables, little attention has been paid to the bounded errors-in-variables problem. This chapter gives a formal proof of a previous result on the description of the feasible parameter region for models linear in the parameters in the presence of bounded errors in all variables. Topological features of the feasible parameter region, such as convexity and connectedness, are also discussed. Finally, approximate parameter uncertainty intervals are derived for ARMAX models when all the observed variables are affected by bounded noise. For an example involving extensive simulations, central estimates obtained by means of the bounded errors-in-variables approach and least squares estimates are computed and compared.

Keywords

Equation Error Central Estimate Topological Feature Little Square Estimate Parameter Bounding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Söderström and P. Stoica, System Identification, Prentice-Hall, Englewood Cliffs, N.J. (1989).zbMATHGoogle Scholar
  2. 2.
    J. P. Norton, Int. J. Control 45, 375 (1987).zbMATHCrossRefGoogle Scholar
  3. 3.
    T. Söderström, Automatica 17, 713 (1981).zbMATHCrossRefGoogle Scholar
  4. 4.
    M. Milanese and G. Belforte, IEEE Trans. Autom. Control 27, 408 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    E. Fogel and Y. F. Huang, Automatica 18, 229 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    S. H. Mo and J. P. Norton, in: IEE Proceedings, part D, No. 135, pp. 127-132 (1988).Google Scholar
  7. 7.
    G. Belforte, B. Bona, and V. Cerone, Automatica 26, 887 (1990).zbMATHCrossRefGoogle Scholar
  8. 8.
    A. Vicino and G. Zappa, in: Proceedings of the 32nd IEEE Conference on Decision and Control, San Antonio, TX, pp. 2044-2049 (1993).Google Scholar
  9. 9.
    H. Piet-Lahanier and E. Walter, in: Bounding Approaches to System Identification (Milanese et al., eds.) Plenum Press, New York, Chap. 16 (1996).Google Scholar
  10. 10.
    E. Walter and H. Piet-Lahanier, IEEE Trans. Automat. Control 34, 911 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    V. Broman and M. J. Shensa, Math. Comput. Simul. 32, 469 (1990).MathSciNetCrossRefGoogle Scholar
  12. 12.
    S. H. Mo and J. P. Norton, Math. Comput. Simul 32, 481 (1990).MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Vicino and M. Milanese, IEEE Trans. Automat. Control 36, 759 (1991).MathSciNetCrossRefGoogle Scholar
  14. 14.
    J. P. Norton, Int. J. Control 50, 2423 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    L. Pronzato and E. Walter, Int. J. Adapt. Control Signal Process. 18, 15 (1994).MathSciNetCrossRefGoogle Scholar
  16. 16.
    L. Pronzato and E. Walter, in: Bonding Approaches to System Identification (Milanese et al., eds.) Plenum Press, New York, Chap. 8 (1996).Google Scholar
  17. 17.
    J. P. Norton, Automatica 23, 497 (1987).zbMATHCrossRefGoogle Scholar
  18. 18.
    E. Walter and H. Piet-Lahanier, Math. Comput. Simul. 32, 449 (1990).MathSciNetCrossRefGoogle Scholar
  19. 19.
    M. Milanese and A. Vicino, Automatica 27, 997 (1991).MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    G. Belforte, B. Bona, and V. Cerone, Math. Comput. Simul. 32, 561 (1990).MathSciNetCrossRefGoogle Scholar
  21. 21.
    V. Cerone, in: Prep. 9th IFAC/IFORS Symposium on Identification and System Parameter Estimation (C. Banyasz and L. Keviczky, eds.), Budapest, Hungary, pp. 1518-1523 (1991).Google Scholar
  22. 22.
    V. Cerone, Automatica 29, 1551 (1993).zbMATHCrossRefGoogle Scholar
  23. 23.
    T. Clement and S. Gentil, Math. Comput. Simul. 30, 257 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    T. Clement and S. Gentil, Math. Comput. Simul. 32, 505 (1990).MathSciNetCrossRefGoogle Scholar
  25. 25.
    Y. A. Merkuryev, Int. J. Control 50, 2333 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    R. E. Moore, Methods and Applications of Interval Analysis, SIAM Studies in Applied Mathematics, Philadelphia, PA (1979).zbMATHCrossRefGoogle Scholar
  27. 27.
    S. M. Veres and J. P. Norton, in: 9th IFAC Symposium on Identification and System Parameter Estimation (C. Banyasz and L. Keviczky, eds.) Budapest, Hungary, pp. 1038-1043 (1991).Google Scholar
  28. 28.
    B. R. Barmish and J. Sankaran, IEEE Trans. on Autom. Control 24, 346 (1979).MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    B. Z. Kacewicz, M. Milanese, R. Tempo, and A. Vicino, Syst. Control Lett. 8, 161 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    V. Cerone, in: Prep. 9th IFAC Symposium on Identification and System Parameter Estimation (C. Banyasz and L. Keviczky, eds.), Budapest, Hungary, pp. 1419-1424 (1991).Google Scholar
  31. 31.
    V. Cerone, Int. J. Control 57, 225 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    R. Tempo, B. R. Barmish, and J. Trujillo, in: Prep. 8th IFAC/IFORS Symposium on Identification and System Parameter Estimation, Beijing, P.R. China, pp. 1136-1140 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • V. Cerone
    • 1
  1. 1.Dipartmento di Automatica e InformaticaPolitecnico di TorinoTorinoItaly

Personalised recommendations