Limited-Complexity Polyhedric Tracking

  • H. Piet-Lahanier
  • É. Walter


When the errors between the data and model outputs are affine in the parameter vector θ, the set of all values of θ such that these errors fall within known prior bounds is a polytope (under some identiflability conditions, which can be described exactly and recursively. However, this polytope may turn out to be too complicated for its intended use. In this chapter, an algorithm is presented for recursively computing a limited-complexity approximation guaranteed to contain the exact polytope. Complexity is measured by the number of supporting hyperplanes. The simplest polyhedric description that can thus be obtained is in the form of a simplex, but polyhedra with more faces can be considered as well. A polyhedric algorithm is also described for tracking time-varying parameters, which can accommodate both smooth and infrequent abrupt variations of the parameters. Both algorithms are combined to yield a limited-complexity polyhedric tracker.


Adjacent Vertex Expansion Factor Convex Polyhedron Supporting Hyperplane Expansion Policy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. C. Schweppe, IEEE Trans. Automat. Control 13, 22 (1968).CrossRefGoogle Scholar
  2. 2.
    E. Walter and H. Piet-Lahanier, Math. and Comput. in Simul. 32, 449 (1990).MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Milanese and A. Vicino, Automatica 27, 997 (1991).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    V. Broman and M. J. Shensa, Math. and Comput. in Simul. 32, 469 (1990).MathSciNetCrossRefGoogle Scholar
  5. 5.
    E. Walter and H. Piet-Lahanier, IEEE Trans. Autom. Contr. 34, 911 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    S. H. Mo and J. P. Norton, Math. and Comput. in Simul. 32, 481 (1990).MathSciNetCrossRefGoogle Scholar
  7. 7.
    E. Fogel and Y.-F. Huang, Automatica 18, 229 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    G. Belforte, B. Bona, and V. Cerone, Automatica 26, 887 (1990).zbMATHCrossRefGoogle Scholar
  9. 9.
    J. R. Deller, IEEE Trans. Acoustic Speech and Signal Processing 37, 1432 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    M. Milanese and G. Belforte, IEEE Trans. Automat. Control 27, 408 (1986).MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Vicino and G. Zappa, in: Proc. Workshop on the Modeling of Uncertainty in Control Systems (M. Dahleh, J. Doyle, and R. Smith, eds.) Springer-Verlag, Berlin, Germany (1992).Google Scholar
  12. 12.
    S. Dasgupta and Y. F. Huang, IEEE Trans. Informat. Theory, 33, 383 (1987).zbMATHCrossRefGoogle Scholar
  13. 13.
    J. P. Norton and S. H. Mo, Math. Comput. and Simul. 32, 527 (1990).MathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Piet-Lahanier and E. Walter, in: 31st IEEE Conf. on Decision and Contr., pp. 66-67 (1992); IEEE Trans. on Autom. Control 39, 1661 (1994).MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    E. Walter and H. Piet-Lahanier, in: Bounding Approaches to System Identification (M. Milanese et al., eds.), Plenum Press, New York, Chap. 12 (1996).Google Scholar
  16. 16.
    J. B. Lasserre, J. of Optimization Theory and Applications 39, 363 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    M. Berger, Géométrie, Tome 3, Cedic/Nathan, Paris, p. 95 (1979).Google Scholar
  18. 18.
    H. Piet-Lahanier and E. Walter, in: Proc. IEEE Int. Symp. on Circuits and Systems, pp. 782-785 (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • H. Piet-Lahanier
    • 1
  • É. Walter
    • 2
  1. 1.Direction des Études de SynthèseSM Office National d’Etudes et de Recherches AérospatialesChâtillon CedexFrance
  2. 2.Laboratoire des Signaux et SystèmesCNRS-École Supérieure d’ÉlectricitéGif-sur-Yvette CedexFrance

Personalised recommendations