Skip to main content

Abstract

An important problem arising when one wants to estimate the parameters of a model in a bounded-error context is the specification of reliable bounds for this error. In early phases of development, when no prior information is available, one may wish to know the minimum upper bound for the amplitude of the error such that the feasible parameter set is not empty. This corresponds to using a minimax estimator. For models linear in their parameters, we describe a method that takes advantage of a reparametrization in order to recursively obtain the minimax estimates and associated bounds for the error. It also provides the set of parameters compatible with any upper bound of the error. This procedure is extended to output-error models, which are nonlinear in their parameters. Its robustness to outliers is discussed and a technique is described to detect and discard them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Walter and H. Piet-Lahanier, Math. Comput. Simul. 32, 449 (1990).

    Article  MathSciNet  Google Scholar 

  2. E. Fogel and Y. F. Huang, Automatica 18, 229 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Pronzato, E. Walter, and H. Piet-Lahanier, in: Proceedings of the 28th IEEE Conference on Decision and Control, Tampa, FL, pp. 1952-1955 (1989).

    Google Scholar 

  4. G. Belforte, B. Bona, and V. Cerone, Automatica 26, 887 (1990).

    Article  MATH  Google Scholar 

  5. M. Milanese and G. Belforte, IEEE Trans. Autom. Control AC-27, 408 (1982).

    Article  MathSciNet  Google Scholar 

  6. V. Broman and M. J. Shensa, in: Proceedings of the 25th IEEE Conference on Decision and Control, Athens, Greece, pp. 1749-1752 (1986).

    Google Scholar 

  7. S. H. Mo and J. P. Norton, Math. Comput. Simul. 32, 481 (1990).

    Article  MathSciNet  Google Scholar 

  8. E. Walter and H. Piet-Lahanier, IEEE Trans. Autom. Control AC-34, 911 (1989).

    Article  MathSciNet  Google Scholar 

  9. G. Belforte and M. Milanese, in: Proceedings of the 1st IASTED International Symposium on Modeling Identification and Control, Davos, Switzerland, pp. 75-79 (1981).

    Google Scholar 

  10. J. P. Norton, Int. J. Control 45, 375 (1987).

    Article  MATH  Google Scholar 

  11. T. Clement and S. Gentil, Math Comput. Simul. 30, 257 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Milanese and A. Vicino, in: System Modelling and Simulation (S. Tzafestas et al. eds.) Elsevier, Amsterdam, The Netherlands, pp. 91–96 (1989).

    Google Scholar 

  13. K. Keesman, Math. Comput. Simul. 32, 535 (1990).

    Article  MathSciNet  Google Scholar 

  14. H. Piet-Lahanier and E. Walter, Math. Comput. Simul. 32, 553 (1990).

    Article  MathSciNet  Google Scholar 

  15. P. S. Laplace, in: Mémoires de l’Académie des Sciences de Paris, pp. 1–87 (1793); Oeuvres, Vol. 11, (Reprint) Gauthier-Villars, Paris, pp. 447-558 (1895).

    Google Scholar 

  16. J. B. Fourier, in: Histoire de l’Académie pour 1824, pp. 325–328 (1824); Oeuvres (Reprint) Gauthier-Villars, Paris (1890).

    Google Scholar 

  17. A. L. Cauchy, Journal de l’École Polytechnique 13, 175 (1831); Oeuvres (Reprint) Series 2, Vol. 1, Gauthier-Villars, Paris (1905).

    Google Scholar 

  18. R. W. Farebrother, in: Statistical Data Analysis Based on the L 1-Norm (Y. Dodge, ed.) Elsevier, Amsterdam, The Netherlands, pp. 37–63 (1987).

    Google Scholar 

  19. A. Ralston, A First Course in Numerical Analysis, McGraw-Hill, New York (1965).

    MATH  Google Scholar 

  20. E. Walter and H. Piet-Lahanier, in: Prep. 9th IFAC/IFORS Symposium on Identification and System Parameter Estimation, Budapest, Hungary. pp. 763-768 (1991).

    Google Scholar 

  21. M. L. Overton, in: Nonlinear Optimization 1981 (M. J. D. Powell, ed.) Academic Press, New York (1982).

    Google Scholar 

  22. A. van den Bos, in: Prep. 7th IFAC/IFORS Symposium on Identification and System Parameter Estimation, pp. 173-177 (1985).

    Google Scholar 

  23. G. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, NJ (1963).

    MATH  Google Scholar 

  24. N. Karmarkar, Combinatorica 4, 373 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Dantzig and P. Wolfe, Econometrica 29, 767 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Goffin and J. P. Vial, J. of Optim. Theory and Applic. 65, 409 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  27. T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall, in: Contributions to the Theory of Games, Vol. 2, Annals of Mathematics Study 28, (H. W. Kuhn and A. W. Tucker, eds.) Princeton University Press, Princeton, NJ, pp. 51–73 (1953).

    Google Scholar 

  28. B. D. O. Anderson, Automatica 21, 709 (1985).

    Article  MATH  Google Scholar 

  29. M. Basseville, Automatica 24, 309 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Willsky, IEEE Trans. Autom. Control AC-21, 108 (1976).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walter, É., Piet-Lahanier, H. (1996). Recursive Robust Minimax Estimation. In: Milanese, M., Norton, J., Piet-Lahanier, H., Walter, É. (eds) Bounding Approaches to System Identification. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9545-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9545-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9547-9

  • Online ISBN: 978-1-4757-9545-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics