Paralysis by Botulinum Neurotoxins Uncovers Trophic Secretions at the Neuromuscular Junction

  • Stephen Thesleff


It is well established that the motor nerve in addition to spontaneous and nerve impulse evoked phasic release of acetylcholine (ACh) also secretes, but by a different mechanism, a variety of peptides (neuropeptides). For recent publications and reviews on the subject see, De Camilli and Jahn (1990), Verhage et al.(1991) and two conference volumes (Johnson, 1987; Edelman et al., 1987).


Botulinum Toxin Synaptic Vesicle Neuromuscular Junction Botulinum Neurotoxin Motor Nerve Terminal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alkadhi, K.A., 1989, Giant miniature end-plate potentials at the untreated and emetine-treated frog neuromuscular junction, J. Physiol., 412: 475–491.PubMedGoogle Scholar
  2. Bennett, M.R., McLachlan, E.M. and Taylor, R.S., 1973, The formation of synapses in reinnervated mammalian striated muscle, J. Physiol., 233: 481–500.PubMedGoogle Scholar
  3. Brown, M.C., Goodwin, G.M. and Ironton, R., 1977, Prevention of motor nerve sprouting in botulinum toxin poisoned mouse soleus muscles by direct stimulation of the muscle, J. Physiol., 267: 42 P.Google Scholar
  4. Brown, M.C., Holland, R.L. and Hopkins, W.G., 1981, Motor nerve sprouting, Ann. Rev. Neurosci., 4: 17–42.PubMedCrossRefGoogle Scholar
  5. Colméus, C., Gomez, S., Molgo, J. and Thesleff, S., 1982, Discrepancies between spontaneous and evoked potentials at normal, regenerating and botulinum toxin poisoned mammalian neuromuscular junctions, Proc. R. Soc. Lond. B Biol. Sci., 215: 63–74.PubMedCrossRefGoogle Scholar
  6. De Camilli, P., and Jahn, R., 1990, Pathways to regulated exocytosis in neurons, Ann. Rev. Physiol., 52: 625–645.CrossRefGoogle Scholar
  7. Ding, R., Jansen, J.K.S., Laing, N.G. and Tönnesen, H., 1983, The innervation of skeletal muscles in chickens curarized during early development, J. Neurocytol., 12: 887–919.PubMedCrossRefGoogle Scholar
  8. Duchen, L.W., 1970, Changes in motor innervation and cholinesterase localization induced by botulinum toxin in skeletal muscle of the mouse, differences between fast and slow muscles, J. Neurol. Neurosurg. Psychiat., 33: 40–54.PubMedCrossRefGoogle Scholar
  9. Duchen, L.W. and Strich, S.J., 1968, The effects of botulinum toxin on the pattern of innervation of skeletal muscle in the mouse, Quart. J. Exp. Physiol., 53: 84–89.PubMedGoogle Scholar
  10. Edelman, G.M., Gall, W.E. and Cowan, W.M., eds., 1987, “Synaptic Function”, John Wiley and Sons, New York.Google Scholar
  11. Fischbach, G.D., Harris, D.A., Falls, D.L., Dubinsky, J.M., English, K.L. and Johnson, F.A., 1989, The accumulation of acetylcholine receptors at developing chick nerve-muscle synapses, In: “Neuromuscular Junction”, L.C. Sellin, R. Libelius, and S. Thesleff, eds., Fernström Foundation Series, Elsevier Science Publ., Amsterdam.Google Scholar
  12. Gundersen, K., 1990, Spontaneous activity at long-term silenced synapses in rat muscle, J. Physiol., 430: 399–418.PubMedGoogle Scholar
  13. Heinonen, E., Jansson, S.-E. and Tolppanen, E.-M., 1982, Independent release of supranormal acetylcholine quanta at the rat neuromuscular junction, Neurosci., 7: 21–24.CrossRefGoogle Scholar
  14. Heuser, J.E., 1974, A possible origin of the “giant” spontaneous potentials that occur after prolonged transmitter release at frog neuromuscular junctions, J. Physiol., 239: 106P–108 P.PubMedGoogle Scholar
  15. Hökfelt, T., Fuxe, K. and Pernow, P., eds., 1986, Coexistence of neuronal messengers, Progr. Brain Res., 68:1–411.Google Scholar
  16. Jirmanova, I. and Thesleff, S., 1976, Motor end-plates in regenerating rat skeletal muscle exposed to botulinum toxin, Neurosci., 1: 345–347.CrossRefGoogle Scholar
  17. Johnson, R.G., ed., 1987, Cellular and molecular biology of hormone-and neurotransmitter-containing secretory vesicles, Ann. N.Y. Acad. Sci., 493:1–590.CrossRefGoogle Scholar
  18. Katz, B., 1969, The release of neural transmitter substances, in:“ The Sherrington Lectures X”., Liverpool Univ. Press.Google Scholar
  19. Kim, Y.I., Lömo, T., Lupa, M.T. and Thesleff, S., 1984. Miniature endplate potentials in rat skeletal muscle poisoned with botulinum toxin, J. Physiol., 356: 587–599.PubMedGoogle Scholar
  20. Laufer, R. and Changeux, J-P., 1987, Calcitonin gene-related peptide elevates cyclic AMP levels in chick skeletal muscle: possible neurotrophic role for a coexisting neuronal messenger, EMBO J., 6: 901–906.PubMedGoogle Scholar
  21. Lawoko, G. and Tâgerud, S., 1992, High endocytic activity occurs periodically in the endplate region of denervated mouse skeletal muscle fibres, In press.Google Scholar
  22. Libelius, R., Josefsson, J.-O. and Lundquist, I., 1979, Endocytosis in chronically denervated mouse skeletal muscle. A biochemical and ultrastructural study with horseradish peroxidase, Neurosci., 4: 283–292.CrossRefGoogle Scholar
  23. Liley, A.W., 1957, Spontaneous release of transmitter substance in multiquantal units, J. Physiol., 136: 595–605.PubMedGoogle Scholar
  24. Lömo, T. and Gundersen, K., 1988, Trophic control of skeletal muscle membrane properties, In: “Nerve-Muscle Cell Trophic Communication”, H.L. Fernandez, ed., CRC Press, Boca Raton.Google Scholar
  25. Lüllmann-Rauch, R., 1971, The regeneration of neuromuscular junctions during spontaneous re-innervation of the rat diaphragm, Z. Zellforsch., 121: 593–603.CrossRefGoogle Scholar
  26. Lupa, M.T., Tabti, N., Thesleff, S., Vyskocil, F. and Yu, S.-P., 1986, The nature and origin of calcium-insensitive miniature end-plate potentials at rodent neuromuscular junctions, J. Physiol., 381: 607–618.PubMedGoogle Scholar
  27. Molgo, J., Comella, J.X., Angaut-Petit, D., Pecot-Dechavassine, M., Tabti, N., Faille, L., Mallart, A. and Thesleff, S., 1990, Presynaptic actions of botulinal neurotoxins at vertebrate neuromuscular junctions, J. Physiol., 84: 152–166.Google Scholar
  28. Molgo, J. and Thesleff, S., 1982, 4-aminoquinoline-induced “giant” miniature endplate potentials at mammalian neuromuscular junctions, Proc. R. Soc. Lond. B Biol. Sci., 214: 229–247.PubMedCrossRefGoogle Scholar
  29. Ochs, S., 1988, An historical introduction to the trophic regulation of skeletal muscle, In: “Nerve-muscle Cell Trophic Communication”, H.L. Fernandez, ed., CRC press, USA.Google Scholar
  30. Pécot-Dechavassine, M. and Molgo, J., 1982, Attempt to detect morphological correlates for the “giant” miniature end-plate potentials induced by 4-aminoquinoline, Biol. Cell., 46: 93–96.Google Scholar
  31. Pécot-Dechavassine, M., Molgo, J. and Thesleff, S., 1991, Ultrastructure of botulinum type-A poisoned frog motor nerve terminals after enhanced quantal transmitter release caused by carbonyl cyanide mchlorophenylhydrazone, Neurosci. Lett., 130: 5–8.PubMedCrossRefGoogle Scholar
  32. Tâgerud, S. and Libelius, R., 1984, Lysosomes in skeletal muscle following denervation. Time course of horseradish peroxidase uptake and increases of lysosomal enzymes, Cell Tissue Res., 236: 73–79.PubMedCrossRefGoogle Scholar
  33. Tâgerud, S., Libelius, R. and Shainberg, A., 1990, High endocytotic and lysosomal activities in segments of rat myotubes differentiated in vitro, Cell Tissue Res., 259: 225–232.PubMedCrossRefGoogle Scholar
  34. Tâgerud, S., Libelius, R. and Thesleff, S., 1986, Effects of botulinum toxin induced muscle paralysis on endocytosis and lysosomal enzyme activities in mouse skeletal muscle, Pflügers Arch., 407: 275–278.PubMedCrossRefGoogle Scholar
  35. Thesleff, S. and Molgo, J., 1983, Commentary. A new type of transmitter release at the neuromuscular junction, Neurosci., 9: 1–8.CrossRefGoogle Scholar
  36. Thesleff, S., Molgo, J. and Tâgerud, S., 1990, Trophic interrelations at the neuromuscular junction as revealed by the use of botulinal neurotoxins, J. Physiol. (Paris), 84: 167–173.Google Scholar
  37. Thesleff, S., Sellin, L.C. and Tâgerud, S., 1990, Tetrahydroaminoacridine (tacrine) stimulates neurosecretion at mammalian motor endplates, Br. J. Pharmacol., 100: 487–490.PubMedCrossRefGoogle Scholar
  38. Thureson-Klein, A.K., Klein, R.L., Zhu, P.-C. and Kong, J.-Y., 1988, Differential release of transmitters and neuropeptides co-stored in central and peripheral neurons, In: “Cellular and Molecular Basis of Synaptic Transmission”, H. Zimmermann, ed., Springer Verlag, Berlin.Google Scholar
  39. Verhage, M., McMahon, H.T., Ghijsen, W.E.J.M., Boomsma, F., Scholten, G., Wiegant, V.M. and Nicholls, D.G., 1991, Differential release of amino acids, neuropeptides, and catecholamines from isolated nerve terminals, Neuron, 6: 517–524.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Stephen Thesleff
    • 1
  1. 1.Department of PharmacologyUniversity of LundLundSweden

Personalised recommendations