Tetanus Neurotoxin: (1) Immunological Roles of Fragments of the Toxin in Protection, and (2) Attempts to Identify Target Site(s) of Its Toxic Action

  • Morihiro Matsuda
  • Toshio Okabe
  • Nakaba Sugimoto

Abstract

We have been working on the structure-function relationship of tetanus neurotoxin, not only from a fundamental (biological) point of view, as a basis for understanding the mechanism of action of tetanus neurotoxin, but also from a practical (medical) point of view, as a basis for improvement of prophylaxis and treatment of tetanus.

Keywords

Phorbol Myristate Acetate Chromaffin Cell Phorbol Myristate Acetate Tetanus Toxin Plasma Membrane Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Matsuda and M. Yoneda, Isolation and purification of two antigenically active, “complementary” polypeptide fragments of tetanus neurotoxin, Infect. Immun. 12: 1147–1153. (1975).PubMedGoogle Scholar
  2. 2.
    M. Matsuda and M. Yoneda, Antigenic substructure of tetanus neurotoxin, Biochem. Biophys. Res. Commun. 77: 268–274. (1977).PubMedCrossRefGoogle Scholar
  3. 3.
    K. Ozutsumi, D.-L. Lei, N. Sugimoto,and M. Matsuda, Isolation and purification by high performance liquid chromatography of a tetanustoxin Fragment (Fragment [AB]) derived from mildly papain-treated toxin, Toxicon 27: 1055–1057. (1985).CrossRefGoogle Scholar
  4. 4.
    M. Matsuda, D.-L. Lei, N. Sugimoto, K. Ozutsumi, and T. Okabe, Isolation, purification, and characterization of Fragment B, the NH2-terminal half of the heavy chain of tetanus toxin, Infect. Immun. 57: 3588–3593. (1989).PubMedGoogle Scholar
  5. 5.
    M. Matsuda, G. Makinaga, and T. Hirai, Studies on the antibody composition and neutralizing activity of tetanus antitoxin sera from various species of animals in relation to the antigenic substructure of the tetanus toxin molecule, Biken J. 26: 133–143. (1983).PubMedGoogle Scholar
  6. 6.
    R. Murata, E. Wada, A. Yamamoto, and K. Kubota, Studies on the standardization of tetanus toxoid: differences in the relative potency by animal species, Jpn. J. Med. Sci. Biol. 14: 121–129. (1961).PubMedGoogle Scholar
  7. 7.
    M. Kamei, S. Hashizume, N. Sugimoto, K. Ozutsumi, and M. Matsuda, Establishment of stable mouse/human-human hybrid cell lines producing large amounts of anti-tetanus human monoclonal antibodies with high neutralizing activity, Eur. J. Epidemiol. 6: 386–397. (1990).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Matsuda, M. Kamei, N. Sugimoto, Y. Ma, and S. Hashizume, Characteristics of toxin-neutralization by anti-tetanus humanmonoclonal antibodies directed against the three functional domains [A], [B] and [C] of the tetanus toxin molecule and a reliable method for evaluating the protective effects of monoclonal antibodies, Eur. J. Epidemiol. 8: 1–8. (1992).PubMedCrossRefGoogle Scholar
  9. 9.
    D.L. Kilpatrik, F.H. Ledbetter, K.A. Carson, A.G. Kirshner, R. Slepstis, and N. Kirshner, Stability of bovine adrenal medulla cells in culture, J. Neurochem. 35: 679–692. (1980).CrossRefGoogle Scholar
  10. 10.
    L.A. Dunn, and R.W. Holz, Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells, J. Biol. Chem. 258: 4989–4993. (1983).PubMedGoogle Scholar
  11. 11.
    S. Kakiuchi, K. Sobue, R. Yamazaki, J. Kambayashi, M. Sakon, and G. Kosaki, Lack of tissue specificity of calmodulin: A rapid and high-yield purification method, FEBS Lett. 126: 203–207. (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Bretscher, Smooth muscle caldesmon: Rapid purification and F-actin cross-linking properties, J. Biol. Chem. 259: 12873–12880. (1984).PubMedGoogle Scholar
  13. 13.
    H. Strzelecka-Golaszewska, E. Próchniewicz, E. Nowak, and S. Zmorzynski, Chicken-gizzard actin: Polymerization and stability, Eur. J. Biochem. 104: 41–52. (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    J.R. Glenny Jr., B. Tack, and M.A. Powell, Calpactins: Two distinct Ca-regulated phospholipid-and actin-binding proteins isolated from lung and placenta, J. Cell Biol. 104: 503–511. (1987).CrossRefGoogle Scholar
  15. 15.
    H.B. Pollard, O. Zinder, P.G. Hoffman, and O. Nikodejevic, Regulation of the transmembrane potential of isolated chromaffin granules by ATP, ATP analogs, and external pH, J. Biol. Chem. 251: 4544–4550. (1976).PubMedGoogle Scholar
  16. 16.
    T. Schäfer, U.O. Karli, E.K.-M. Gratwohl, F.E. Schweizer, and M.M. Burger, Digitonin-permeabilized cells are exocytosis competent, J. Neurochem. 49: 1697–1707. (1987).PubMedCrossRefGoogle Scholar
  17. 17.
    D. Hoekstra, T. Boer, K. Klappe, and J. Wilschut, Fluorescence method for measuring the kinetics of fusion between biological membranes, Biochem. 23; 56755681. (1984).Google Scholar
  18. 18.
    B. Bizzini and A.A. Fedinec, Structural and functional characterization of tetanus toxin. Nomenclature, in: “The Eighth International Conference on Tetanus” G. Nisticò, B. Bizzni, B. Bytchenko, R. Triau, eds., Pythagora Press, Rome-Milan. p. 3742. (1989).Google Scholar
  19. 19.
    J. Aguilera, G. Ahnert-Hilger, H. Bigalke, B.R. DasGupta, O. Dolly, E. Habermann, J. Halpern, S. van Heyningen, J. Middlebrook, S. Mochida, C. Motecucco, H. Niemann, K. Oguma, M. Popoff, B. Poulain, L. Simpson, C.C. Shone, D.E. Thompson, U. Weller, H.H. Wellhöner, S.M. Whelan, Clostridial neurotoxins-Proposal of a common nomenclature, FEMS Microbiol. Lett. 90: 99–100. (1992).Google Scholar
  20. 20.
    M.A. Bittner and R. W. Holz, Effects of tetanus toxin on catecholamine release from intact and digitonin-permeabilized chromaffin cells, J. Neurochem. 51: 451–456 (1988).PubMedCrossRefGoogle Scholar
  21. 21.
    U.O. Karli, T. Schäfer, and M.M. Burger, Fusion of neurotransmitter vesicles with target membrane is calcium independent in a cell-free system, Proc. Natl. Acad. Sci. USA 87: 5912–5915. (1990).PubMedCrossRefGoogle Scholar
  22. 22.
    D.S. Drust, and C.E. Creutz, Aggregation of chromaffin granules by calpactin at micromolar levels of calcium, Nature 331: 88–91. (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    L.E. King Jr., A.A. Fedinec, and W.C. Latham, Effects of cyclic nucleotides on tetanus toxin paralyzed rabbit sphincter pupillae muscle, Toxicon. 16: 625–631. (1978).PubMedCrossRefGoogle Scholar
  24. 24.
    K. Sandberg, C.J. Berry, E. Eugster, and T.B. Rogers, Studies on the molecular mechanism of action of tetanus toxin: A role for cGMP in the release of acetylcholine from PC12 cells, in: “The Eighth International Conference on Tetanus” G. Nisticò, B. Bizzini, B. Bytchenko, and R. Triau, eds., Pythagora Press, Rome-Milan, p. 114–126. (1989).Google Scholar
  25. 25.
    K. Sandberg, C.J., Berry, and T.B. Rogers, Studies on the intoxication pathway of tetanus toxin in the rat pheochromocytoma (PC12) cell line. Binding, internalization, and inhibition of acetylcholine release, J. Blot. Chem. 264: 5679–5686. (1989).Google Scholar
  26. A.A. Fedinec, T. Duda, B. Bizzini, N.G.F. Cooper, and P.K. Sharma, Tetanus toxin inhibits the ANF receptor guanylate cyclase singnaling systemat its guanylate cyclase domain, Abstracts of 9th International Congress on Tetanus and Anti-Infectious Defense (Oct. 8–11, Granada, Spain), p.112. (1991).Google Scholar
  27. 27.
    J. Aguilera and E. Yavin, In vivo translocation and down-regulation of protein kinase C following intraventricular administration of tetanus toxin, J. Neurochem. 54: 339–342. (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    J.L. Ho and M.S. Klempner, Diminished activity of protein kinase C in tetanus toxin-treated macrophages and in the spinal cord of mice manifesting generalized tetanus intoxication, J. Infect. Dis. 157: 925–933. (1988).PubMedCrossRefGoogle Scholar
  29. 29.
    R.V. Considine, J.K. Bielicki, L.L. Simpson, J.R. Sherwin, Tetanus toxin attenuates the ability of phorbol myristate acetate to mobilize cytosolic protein kinase C in NG-108 cells. Toxicon 28: 13–19. (1990).PubMedCrossRefGoogle Scholar
  30. 30.
    R.V. Considine, C.M. Handler, L.L. Simpson, and J.R. Sherwin, Tetanus toxin inhibits neurotensin-induced mobilization of cytosolic protein kinase C activity, Toxicon 11:1351–1357. (1991).Google Scholar
  31. 31.
    S.M. Ali, M.J. Geisow, and R.D. Burgoyne, A role for calpactin in calcium-dependent exocytosis in adrenal chromaffin cells, Nature 340: 313. (1989).PubMedCrossRefGoogle Scholar
  32. 32.
    T. Nakata, K. Sobue, and N. Hirokawa, Conformational change and localization of calpactin I complex involved in exocytosis as revealed by quick-freeze, deep-etch electron microscopy and immunocytochemistry, J. Cell Biol. 110: 13–25. (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Morihiro Matsuda
    • 1
  • Toshio Okabe
    • 1
  • Nakaba Sugimoto
    • 1
  1. 1.Department of Tuberculosis Research (Bacterial Toxinology) Research Institute for Microbiol DiseasesOsaka UniversityOsaka, 565Japan

Personalised recommendations