Skip to main content

Tetanus Neurotoxin: (1) Immunological Roles of Fragments of the Toxin in Protection, and (2) Attempts to Identify Target Site(s) of Its Toxic Action

  • Chapter
Botulinum and Tetanus Neurotoxins

Abstract

We have been working on the structure-function relationship of tetanus neurotoxin, not only from a fundamental (biological) point of view, as a basis for understanding the mechanism of action of tetanus neurotoxin, but also from a practical (medical) point of view, as a basis for improvement of prophylaxis and treatment of tetanus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Matsuda and M. Yoneda, Isolation and purification of two antigenically active, “complementary” polypeptide fragments of tetanus neurotoxin, Infect. Immun. 12: 1147–1153. (1975).

    PubMed  CAS  Google Scholar 

  2. M. Matsuda and M. Yoneda, Antigenic substructure of tetanus neurotoxin, Biochem. Biophys. Res. Commun. 77: 268–274. (1977).

    Article  PubMed  CAS  Google Scholar 

  3. K. Ozutsumi, D.-L. Lei, N. Sugimoto,and M. Matsuda, Isolation and purification by high performance liquid chromatography of a tetanustoxin Fragment (Fragment [AB]) derived from mildly papain-treated toxin, Toxicon 27: 1055–1057. (1985).

    Article  Google Scholar 

  4. M. Matsuda, D.-L. Lei, N. Sugimoto, K. Ozutsumi, and T. Okabe, Isolation, purification, and characterization of Fragment B, the NH2-terminal half of the heavy chain of tetanus toxin, Infect. Immun. 57: 3588–3593. (1989).

    PubMed  CAS  Google Scholar 

  5. M. Matsuda, G. Makinaga, and T. Hirai, Studies on the antibody composition and neutralizing activity of tetanus antitoxin sera from various species of animals in relation to the antigenic substructure of the tetanus toxin molecule, Biken J. 26: 133–143. (1983).

    PubMed  CAS  Google Scholar 

  6. R. Murata, E. Wada, A. Yamamoto, and K. Kubota, Studies on the standardization of tetanus toxoid: differences in the relative potency by animal species, Jpn. J. Med. Sci. Biol. 14: 121–129. (1961).

    PubMed  CAS  Google Scholar 

  7. M. Kamei, S. Hashizume, N. Sugimoto, K. Ozutsumi, and M. Matsuda, Establishment of stable mouse/human-human hybrid cell lines producing large amounts of anti-tetanus human monoclonal antibodies with high neutralizing activity, Eur. J. Epidemiol. 6: 386–397. (1990).

    Article  PubMed  CAS  Google Scholar 

  8. M. Matsuda, M. Kamei, N. Sugimoto, Y. Ma, and S. Hashizume, Characteristics of toxin-neutralization by anti-tetanus humanmonoclonal antibodies directed against the three functional domains [A], [B] and [C] of the tetanus toxin molecule and a reliable method for evaluating the protective effects of monoclonal antibodies, Eur. J. Epidemiol. 8: 1–8. (1992).

    Article  PubMed  CAS  Google Scholar 

  9. D.L. Kilpatrik, F.H. Ledbetter, K.A. Carson, A.G. Kirshner, R. Slepstis, and N. Kirshner, Stability of bovine adrenal medulla cells in culture, J. Neurochem. 35: 679–692. (1980).

    Article  Google Scholar 

  10. L.A. Dunn, and R.W. Holz, Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells, J. Biol. Chem. 258: 4989–4993. (1983).

    PubMed  CAS  Google Scholar 

  11. S. Kakiuchi, K. Sobue, R. Yamazaki, J. Kambayashi, M. Sakon, and G. Kosaki, Lack of tissue specificity of calmodulin: A rapid and high-yield purification method, FEBS Lett. 126: 203–207. (1981).

    Article  PubMed  CAS  Google Scholar 

  12. A. Bretscher, Smooth muscle caldesmon: Rapid purification and F-actin cross-linking properties, J. Biol. Chem. 259: 12873–12880. (1984).

    PubMed  CAS  Google Scholar 

  13. H. Strzelecka-Golaszewska, E. Próchniewicz, E. Nowak, and S. Zmorzynski, Chicken-gizzard actin: Polymerization and stability, Eur. J. Biochem. 104: 41–52. (1980).

    Article  PubMed  CAS  Google Scholar 

  14. J.R. Glenny Jr., B. Tack, and M.A. Powell, Calpactins: Two distinct Ca-regulated phospholipid-and actin-binding proteins isolated from lung and placenta, J. Cell Biol. 104: 503–511. (1987).

    Article  Google Scholar 

  15. H.B. Pollard, O. Zinder, P.G. Hoffman, and O. Nikodejevic, Regulation of the transmembrane potential of isolated chromaffin granules by ATP, ATP analogs, and external pH, J. Biol. Chem. 251: 4544–4550. (1976).

    PubMed  CAS  Google Scholar 

  16. T. Schäfer, U.O. Karli, E.K.-M. Gratwohl, F.E. Schweizer, and M.M. Burger, Digitonin-permeabilized cells are exocytosis competent, J. Neurochem. 49: 1697–1707. (1987).

    Article  PubMed  Google Scholar 

  17. D. Hoekstra, T. Boer, K. Klappe, and J. Wilschut, Fluorescence method for measuring the kinetics of fusion between biological membranes, Biochem. 23; 56755681. (1984).

    Google Scholar 

  18. B. Bizzini and A.A. Fedinec, Structural and functional characterization of tetanus toxin. Nomenclature, in: “The Eighth International Conference on Tetanus” G. Nisticò, B. Bizzni, B. Bytchenko, R. Triau, eds., Pythagora Press, Rome-Milan. p. 3742. (1989).

    Google Scholar 

  19. J. Aguilera, G. Ahnert-Hilger, H. Bigalke, B.R. DasGupta, O. Dolly, E. Habermann, J. Halpern, S. van Heyningen, J. Middlebrook, S. Mochida, C. Motecucco, H. Niemann, K. Oguma, M. Popoff, B. Poulain, L. Simpson, C.C. Shone, D.E. Thompson, U. Weller, H.H. Wellhöner, S.M. Whelan, Clostridial neurotoxins-Proposal of a common nomenclature, FEMS Microbiol. Lett. 90: 99–100. (1992).

    Google Scholar 

  20. M.A. Bittner and R. W. Holz, Effects of tetanus toxin on catecholamine release from intact and digitonin-permeabilized chromaffin cells, J. Neurochem. 51: 451–456 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. U.O. Karli, T. Schäfer, and M.M. Burger, Fusion of neurotransmitter vesicles with target membrane is calcium independent in a cell-free system, Proc. Natl. Acad. Sci. USA 87: 5912–5915. (1990).

    Article  PubMed  CAS  Google Scholar 

  22. D.S. Drust, and C.E. Creutz, Aggregation of chromaffin granules by calpactin at micromolar levels of calcium, Nature 331: 88–91. (1988).

    Article  PubMed  CAS  Google Scholar 

  23. L.E. King Jr., A.A. Fedinec, and W.C. Latham, Effects of cyclic nucleotides on tetanus toxin paralyzed rabbit sphincter pupillae muscle, Toxicon. 16: 625–631. (1978).

    Article  PubMed  CAS  Google Scholar 

  24. K. Sandberg, C.J. Berry, E. Eugster, and T.B. Rogers, Studies on the molecular mechanism of action of tetanus toxin: A role for cGMP in the release of acetylcholine from PC12 cells, in: “The Eighth International Conference on Tetanus” G. Nisticò, B. Bizzini, B. Bytchenko, and R. Triau, eds., Pythagora Press, Rome-Milan, p. 114–126. (1989).

    Google Scholar 

  25. K. Sandberg, C.J., Berry, and T.B. Rogers, Studies on the intoxication pathway of tetanus toxin in the rat pheochromocytoma (PC12) cell line. Binding, internalization, and inhibition of acetylcholine release, J. Blot. Chem. 264: 5679–5686. (1989).

    CAS  Google Scholar 

  26. A.A. Fedinec, T. Duda, B. Bizzini, N.G.F. Cooper, and P.K. Sharma, Tetanus toxin inhibits the ANF receptor guanylate cyclase singnaling systemat its guanylate cyclase domain, Abstracts of 9th International Congress on Tetanus and Anti-Infectious Defense (Oct. 8–11, Granada, Spain), p.112. (1991).

    Google Scholar 

  27. J. Aguilera and E. Yavin, In vivo translocation and down-regulation of protein kinase C following intraventricular administration of tetanus toxin, J. Neurochem. 54: 339–342. (1990).

    Article  PubMed  CAS  Google Scholar 

  28. J.L. Ho and M.S. Klempner, Diminished activity of protein kinase C in tetanus toxin-treated macrophages and in the spinal cord of mice manifesting generalized tetanus intoxication, J. Infect. Dis. 157: 925–933. (1988).

    Article  PubMed  CAS  Google Scholar 

  29. R.V. Considine, J.K. Bielicki, L.L. Simpson, J.R. Sherwin, Tetanus toxin attenuates the ability of phorbol myristate acetate to mobilize cytosolic protein kinase C in NG-108 cells. Toxicon 28: 13–19. (1990).

    Article  PubMed  CAS  Google Scholar 

  30. R.V. Considine, C.M. Handler, L.L. Simpson, and J.R. Sherwin, Tetanus toxin inhibits neurotensin-induced mobilization of cytosolic protein kinase C activity, Toxicon 11:1351–1357. (1991).

    Google Scholar 

  31. S.M. Ali, M.J. Geisow, and R.D. Burgoyne, A role for calpactin in calcium-dependent exocytosis in adrenal chromaffin cells, Nature 340: 313. (1989).

    Article  PubMed  CAS  Google Scholar 

  32. T. Nakata, K. Sobue, and N. Hirokawa, Conformational change and localization of calpactin I complex involved in exocytosis as revealed by quick-freeze, deep-etch electron microscopy and immunocytochemistry, J. Cell Biol. 110: 13–25. (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matsuda, M., Okabe, T., Sugimoto, N. (1993). Tetanus Neurotoxin: (1) Immunological Roles of Fragments of the Toxin in Protection, and (2) Attempts to Identify Target Site(s) of Its Toxic Action. In: DasGupta, B.R. (eds) Botulinum and Tetanus Neurotoxins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9542-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9542-4_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9544-8

  • Online ISBN: 978-1-4757-9542-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics