The Neurospecific Binding of Tetanus Toxin is Mediated by a 20 kDa Protein and by Acidic Lipids

  • Giampietro Schiavo
  • Ornella Rossetto
  • Giovanna Ferrari
  • Cesare Montecucco

Abstract

The clostridial protein neurotoxins responsible for tetanus and botulism are the most potent bacterial toxins. This extreme. potency is at least inpart attributed to their absolute neurospecificity. Tetanus toxin (TeTx) acts at the CNS by impairing neuroexocytosis at the inhibitory spinal cord interneurons thus causing a spastic paralysis. The botulinum neurotoxins (BoNT) act at the PNS by blocking neurotransmitter release at the neuromuscular junctions and cause a flaccid paralysis.

Keywords

PC12 Cell Botulinum Neurotoxin Tetanus Toxin Lipid Monolayer Acidic Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahnert-Hilger G, Weller U, Dauzenroth M-E, Habermann E, Gratzl M. The tetanus toxin light chain inhibits exocytosys. FEBS Lett 1989; 242: 245.PubMedCrossRefGoogle Scholar
  2. 2.
    Beaude P, Delacour A, Bizzini B, Domuado D, Remy M-H. Retrograde axonal transport of an exogenous enzyme covalently linked to B-I1b fragment of tetanus toxin. Biochem J 1990; 271: 87.PubMedGoogle Scholar
  3. 3.
    Boquet P, Duflot E. Tetanus toxin fragment forms channel in lipid vesicles at low pH. Proc Natl Acad Sci USA 1982; 79: 7614.PubMedCrossRefGoogle Scholar
  4. 4.
    Critchley DR, Habig WH, Fishman PH. Revaluation on the role of gangliosides as receptors for tetanus toxin. J Neurochem 1986; 47: 213.PubMedCrossRefGoogle Scholar
  5. 5.
    Demel RA. Monolayers. Description of use and interaction. Methods Enzymol 1974; 32: 539.PubMedCrossRefGoogle Scholar
  6. 6.
    Dukovich M, Wano Y, Bich Thuy L, Katz P, Cullen BR, Kehrl JH, Greene WC. A second human interleukin-2 binding protein that may be a component of high-affinity interleukin-2 receptors. Nature 1987; 327: 518.PubMedCrossRefGoogle Scholar
  7. 7.
    Fishman PS, Savitt JM. Transynaptic transfer of retrogradely transported tetanus protein-peroxidase conjugates. Exp Neurol 1989; 106: 197.PubMedCrossRefGoogle Scholar
  8. 8.
    Greene LA, Aletta JM, Rukenstein A, Green SH. PC12 pheochromocytoma cells: culture, nerve growth factor treatment, and experimental exploitation. Methods Enzymol 1987; 147: 207.PubMedCrossRefGoogle Scholar
  9. 9.
    Habermann E, Dreyer F. Clostridial neurotoxins: handling and action at the cellular and molecular level. Curr Top Microbiol Immunol 1986; 129: 93.PubMedCrossRefGoogle Scholar
  10. 10.
    Howard AD, de La Baume S, Gioannini TL, Hiller JM, Simon EJ. Covalent labeling of opioid receptors with radioiodinated human (3-endorphin. J Biol Chem 1985; 260: 10833.PubMedGoogle Scholar
  11. 11.
    Hempstead BL, Martin-Zanca D, Kaplan DR, Parada LF, Chao MV. High affinity NGF binding requires coexpression of the trk proto-oncogene and low-affinity NGF receptor. Nature 1991; 350: 678.PubMedCrossRefGoogle Scholar
  12. 12.
    loannides CG, Itoh K, Fox FE, Palma R, Good RA, Platsoucas CD. Identification of a second T-cell antigen receptor in human and mouse by an anti-peptide gamma-chain-specific monoclonal antibody. Proc Natl Acad Sci USA 1987; 84: 4244.CrossRefGoogle Scholar
  13. 13.
    Jentoff N, Deabom DG. Labeling of proteins by reductive methylation using sodium cyanoborohydride. J Biol Chem 1979; 254: 4359.Google Scholar
  14. 14.
    Krieglstein KG, Henschen AH, Weller U, Habermann E. Limited proteolysis of tetanus toxin. Eur J Biochem 1991; 202: 41.PubMedCrossRefGoogle Scholar
  15. 15.
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680.PubMedCrossRefGoogle Scholar
  16. 16.
    Laburthe M, Breant B, Rouyer-Fessard C. Molecular identification of receptors for vasoactive intestinal peptide in rat intestinal epithelium by covalent cross-linking. Eur J Biochem 1984; 139: 181.PubMedCrossRefGoogle Scholar
  17. 17.
    Lazarovici P, Yavin E. Affinity purified tetanus neurotoxin interaction with synaptic membranes: properties of a protease-sensitive receptor component. Biochemistry 1986; 25: 7047.PubMedCrossRefGoogle Scholar
  18. 18.
    Lomneth R, Martin TFJ, DasGupta B. Botulinum neurotoxin light chain inhibits norepinephrine secretion in PC12 cells at an intracellular membranous or cytoskeletal site. J Neurochem 1991, 57: 1413.PubMedCrossRefGoogle Scholar
  19. 19.
    Mclnnes C, Dolly JO. Calf-dependent noradrenaline release from penneabilised PC12 cells is blocked by botulinum neurotoxin A or its light chain. FEBS Lett 1990; 261: 323.CrossRefGoogle Scholar
  20. 20.
    Mellanby J. Comparative activities of tetanus and botulinum toxins. Neuroscience 1984; 11: 29.PubMedCrossRefGoogle Scholar
  21. 21.
    Mellanby J, Green. How do tetanus toxin acts? Neuroscience 1981; 6: 281.PubMedCrossRefGoogle Scholar
  22. 22.
    Middlebrook JL. Cell surface receptors for protein toxins. In Simpson LL, ed, Botulinum Neurotoxin and Tetanus Toxin. London: Academic Press, 1989.Google Scholar
  23. 23.
    Mobley WC, Schenker A, Shooter EM. Characterization and isolation of proteolytically modified nerve growth factor. Biochemistry 1976; 15: 5533.CrossRefGoogle Scholar
  24. 24.
    Montecucco C. How do tetanus and botulinum neurotoxins bind to neuronal membranes. Trends Biochem Sci 1986; 11: 314.CrossRefGoogle Scholar
  25. 25.
    Montecucco C. Theoretical considerations on the cellular mechanism of action of clostridial neurotoxins. In Nistico G, Bytchenko B, Bizzini B, Triau R, eds, Eighth International Conference on Tetanus. Rome: Pythagora Press, 1989.Google Scholar
  26. 26.
    Niemann H. Molecular biology of clostridial neurotoxins. In Alouf JE, Freer JH, eds, A Sourcebook of Bacterial Protein Toxins. London: Academic Press, 1991.Google Scholar
  27. 27.
    Park LS, Friend D, Gillis S, Urdal DL. Characterization of cell surface receptor for a multi-lineage colony-stimulating factor (CSF-2) J Biol Chem 1986; 261: 205.PubMedGoogle Scholar
  28. 28.
    Pierce EJ, Davison MD, Parton RG, Habig WH, Critchley DR. Characterization of tetanus toxin binding to rat brain membranes. Biochem J 1986; 236: 845.PubMedGoogle Scholar
  29. 29.
    Poulain B, Mochida M, Wadsworth JDF, Weller U, Haberman E, Dolly JO, Tauc L. Inhibition of neurotransmitter release by botulinum neurotoxins and tetanus toxin at Aplysia synapses: role of the constituent chains. J Physiol (Paris) 1990; 84: 247.Google Scholar
  30. 30.
    Sandberg K, Berry CJ, Rogers TR. Studies on the intoxication pathway of tetanus toxin in the rat pheochromocytoma (PC12) cell line. J Biol Chem 1989; 264: 5679.PubMedGoogle Scholar
  31. 31.
    Schiavo G, Papini E, Genna G, Montecucco C. An intact disulfide bridge is required for the neurotoxicity of tetanus toxin. Infect Immun 1990; 58: 4136.PubMedGoogle Scholar
  32. 32.
    Schiavo G, Demel R, Montecucco C. On the role of polysialoglycosphyngolipids as tetanus toxin receptors. Eur J Biochem 1991; 199: 705.PubMedCrossRefGoogle Scholar
  33. 33.
    Schiavo G, Ferrari G, Rossetto O, Montecucco C. Tetanus toxin receptor. Specific cross-linking of tetanus toxin to a protein of NGF-differentiated PC12 cells. FEBS Lett 1991; 290: 227.PubMedCrossRefGoogle Scholar
  34. 34.
    Schiavo G, Poulain B, Rossetto O, Benfenati F, Tauc L, Montecucco C. Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc. EMBO J 1992; in press.Google Scholar
  35. 35.
    Simpson LL. Botulinum Neurotoxin and Tetanus Toxin. New York: Academic Press, 1989.Google Scholar
  36. 36.
    van Heyningen WE, Mellanby J. A note on specific fixation, specific deactivation and non-specific inactivation of bacterial toxins by gangliosides. Naunyn-Schmiedeberg’s Arch Pharmacol 1973; 276: 297.PubMedCrossRefGoogle Scholar
  37. 37.
    Walton KM, Sandberg K, Rogers TB, Schnaar RL. Complex ganglioside expression and tetanus toxin binding by PC12 pheochromocytoma cells. J Biol Chem 1988; 263: 2055.Google Scholar
  38. 38.
    Weller U, Mauler F, Habermann E. Tetanus toxin: biochemical and pharmacological comparison between its protoxin and some isotoxins obtained by limited proteolysis. Naunyn-Schmiedeberg’s Arch Pharmacol 1988; 338: 99.PubMedGoogle Scholar
  39. 39.
    Weller U, Dauzenroth ME, Meyer Zu Heringdorf U, Habermann E. Chains and fragments of tetanus toxin. Eur J Biochem 1989; 182: 649.PubMedCrossRefGoogle Scholar
  40. 40.
    Wellhoner HH. Tetanus and botulinum neurotoxins. In Herken H, Hucho F, eds. Handbook of Experimental Pharmacology, Vol 102. Berlin: Springer-Verlag, 1992Google Scholar
  41. 41.
    Yavin E. Arch Biochem Biophys 1984; 230: 129.PubMedCrossRefGoogle Scholar
  42. 42.
    Yavin E, Nathan A. Tetanus toxin receptors on nerve cells contain a trypsin-sensitive components. Eur J Biochem 1986; 154: 403.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Giampietro Schiavo
    • 1
  • Ornella Rossetto
    • 1
  • Giovanna Ferrari
    • 2
  • Cesare Montecucco
    • 1
  1. 1.Centro C.N.R. Biomembrane and Dipartimento di Scienze BiomedicheUniversità di PadovaPadovaItaly
  2. 2.Laboratori di Ricerche FIDIA S.p.a.Abano TermeItaly

Personalised recommendations