Current Concepts on the Mechanism of Action of Clostridial Neurotoxins

  • Lance L. Simpson


The purpose of this chapter is to provide a brief review of the literature on botulinum neurotoxin and tetanus toxin. This review will emphasize studies that pertain to cellular and subcellular actions of the toxins on mammalian preparations, and it will deal exclusively with issues that relate to blockade of exocytosis.


Light Chain Heavy Chain Botulinum Toxin Transmitter Release Sialic Acid Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simpson LL. The origin, structure, and pharmacological activity of botulinum toxin. Pharmacol Rev 1981; 33: 155–188.PubMedGoogle Scholar
  2. 2.
    Habermann E, Dreyer F. Clostridial neurotoxins: Handling and action at the cellular level. Curr Topics Microbiol Immun 1986; 129: 93–179.CrossRefGoogle Scholar
  3. 3.
    Simpson LL, ed. Botulinum Neurotoxin and Tetanus Toxin. San Diego: Academic Press, 1989.Google Scholar
  4. 4.
    Dasgupta BR. The structure of botulinum neurotoxin. In: Simpson LL, ed. Botulinum Neurotoxin and Tetanus Toxin. San Diego: Academic Press, 1989: 53–67.Google Scholar
  5. 5.
    Gfinenez JA, Dasgupta BR. Botulinum neurotoxin type E fragmented with endoproteinase Lys-C reveals the site trypsin nicks and homology with tetanus neurotoxin. Biochimie 1990; 72: 213–217.Google Scholar
  6. 6.
    Eisel U, Jarausch W, Goretzki K, Henschen A, Engels J, Weller U, Hudel M, Habermann E, Niemann H. Tetanus toxin: primary structure, expression in E. coli, and homology with botulinum toxins EMBO J 1986; 5: 2495–2502.Google Scholar
  7. 7.
    Fairweather NF, Lyness VA. The complete nucleotide sequence of tetanus toxin. Nucl Acids Res 1986; 14: 7809–7812.PubMedCrossRefGoogle Scholar
  8. 8.
    Binz T, Kurazono H, Wille M, Frevert J, Wemars K, Niemann H. The complete sequence of botulinum neurotoxin type A and comparison with other clostridial neurotoxins. J Biol Chem 1990; 265: 9153–9158.PubMedGoogle Scholar
  9. 9.
    Thompson DE, Brehm JK, Oultram JD, Swinfield TJ, Shone CC, Atkinson T, Melling J, Minton NP. The complete amino acid sequence of the Clostridium botulinum type A neurotoxin, deduced by nucleotide sequence analysis of the encoding gene. Europ J Biochem 1990; 189: 73–81.PubMedCrossRefGoogle Scholar
  10. 10.
    Hambleton P, Shone CC, Wilton-Smitt P, Melling J. A possible antigen on clostridial toxin detected by monoclonal anti-botulinum neurotoxin antibodies. In: Alouf JE, Fehrenbach FJ, Freer JH, and Jeljaszewicz J, eds. Bacterial Protein Toxins. London: Academic Press, 1984.Google Scholar
  11. 11.
    Tsuzuki K, Yokosawa N, Syuto B, Ohishi I, Fujü N, Kimura K, Oguma, K. Establishment of a monoclonal antibody recognizing an antigenic site common to Clostridium botulinum type B, Cl, D, and E toxins and tetanus toxin. Infect Immun 1988; 56: 898–902.Google Scholar
  12. 12.
    Halpem JL, Smith LA, Seamon KB, Groover KA, Habig WH. Sequence homology between tetanus and botulinum toxins detected by an antipeptide antibody. Infect Immun 1989; 57: 18–22.Google Scholar
  13. 13.
    Simpson LL Molecular pharmacology of botulinum toxin and tetanus toxin. Ann Rev Pharmacol Toxicol 1986; 26: 427–453.CrossRefGoogle Scholar
  14. 14.
    Schiavo G, Ferrari G, Rossetto O, Montecucco C. Tetanus toxin receptor. Specific cross-linking of tetanus toxin to a protein of NGF-differentiated PC12 cells. FEBS Letts 1991; 290: 227–230CrossRefGoogle Scholar
  15. 15.
    Van Heyningen WE. The fixation of tetanus toxin by nervous tissue. J Gen Microbiol 1959; 20: 29 1300.Google Scholar
  16. 16.
    Van Heyningen WE. Tentative identification of the tetanus toxin receptor in nervous tissue. J Gen Microbiol 1959; 20: 310–320.CrossRefGoogle Scholar
  17. 17.
    Van Heyningen WE. Gangliosides as membrane receptors for tetanus toxin, cholera toxin and serotonin. Nature 1974; 249: 415–417.CrossRefGoogle Scholar
  18. 18.
    Simpson LL, Rapport MM. The binding of botulinum toxin to membrane lipids: sphingolipids, steroids and fatty acids. J Neurochem 1971; 18: 1751–1759.PubMedCrossRefGoogle Scholar
  19. 19.
    Simpson LL, Rapport MM. Ganglioside inactivation of botulinum toxin. J Neurochem 1971; 18: 1341 1343.Google Scholar
  20. 20.
    Bakry N, Kamata Y, Simpson LL. Lectins from Triticum vulgaris and Limax flavus are universal antagonists of botulinum neurotoxin and tetanus toxin. J Pharmacol Exp Ther 1991; 258: 830–836.PubMedGoogle Scholar
  21. 21.
    Montecucco C. How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem Sci 1986; 11: 314–317.CrossRefGoogle Scholar
  22. 22.
    Simpson LL. Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J Pharmacol Exp Ther 1980; 212: 16–21.PubMedGoogle Scholar
  23. 23.
    Simpson LL. The interaction between aminoquinolines and presynaptically acting neurotoxins. J Phannacol Exp Ther 1982; 222: 43–48.Google Scholar
  24. 24.
    Simpson LL. Ammonium chloride and methylamine hydrochloride antagonize clostridial neurotoxins. J Pharmacol Exp Ther 1983; 225: 546–552.PubMedGoogle Scholar
  25. 25.
    Black JD, Dolly JO. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves. J Cell Biol 1986; 103: 521–534.PubMedCrossRefGoogle Scholar
  26. 26.
    Black JD, Dolly JO. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J Cell Biol 1986; 103: 535–544.PubMedCrossRefGoogle Scholar
  27. 27.
    Hoch DH, Romero-Mira M, Ehrlich BE, Finkelstein A, Dasgupta BR, Simpson, LL. Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc Nati Acad Sci USA 1985; 82: 1692–1696.CrossRefGoogle Scholar
  28. 28.
    Donovan JJ, Middlebrook JL. Ion-conducting channels produced by botulinum toxin in planar lipid membranes. Biochem 1986; 25: 2872–2876.CrossRefGoogle Scholar
  29. 29.
    Blaustein RO, Gennann WJ, Finkelstein A, Dasgupta BR. The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers. FEBS Letters 1987; 226: 115–120.PubMedCrossRefGoogle Scholar
  30. 30.
    Shone CC, Hambleton P, Melling J. A 50-kDa fragment from the NH2-terminus of the heavy subunit of Clostridium botulinum type A neurotoxin forms channels in lipid vesicles. Europ J Biochem 1987; 167: 175–180.PubMedCrossRefGoogle Scholar
  31. 31.
    Montecucco C, Schiavo G, Gao Z, Bauerlein E, Boquet P, Dasgupta BR. Interaction of botulinum and tetanus toxins with the lipid bilayer surface. Biochem J 1988; 251: 379–383.PubMedGoogle Scholar
  32. 32.
    Montecucco C, Schiavo G, Dasgupta BR. Effect of pH on the interaction of botulinum neurotoxins A, B and E with liposomes. Biochem J 1989; 259: 47–53.Google Scholar
  33. 33.
    Kamata Y, Lautenslager G, Simpson LL. Structural changes in the botulinum neurotoxin molecule that may be associated with the process of internalization and expression of pharmacologic activity. Infect Immun (submitted for publication).Google Scholar
  34. 34.
    Boquet P, Duflot E. Tetanus toxin fragment forms channels in lipid vesicles at low pH. Proc Nati Acad Sci USA 1982; 79: 7614–7618.CrossRefGoogle Scholar
  35. 35.
    Borochov-Neori H, Yavin E, Montai N. Tetanus toxin forms channels in planar lipid bilayers. Biophys J 1984; 45: 83–85.PubMedCrossRefGoogle Scholar
  36. 36.
    Gambale F, Montai M. Characterization of the channel properties of tetanus toxin in planar lipid bilayers. Biophys J 1988; 53: 771–783.PubMedCrossRefGoogle Scholar
  37. 37.
    Menestrina G, Forti S, Gambale F. Interaction of tetanus toxin with lipid vesicles. Effects of pH, surface charge, and transmembrane potential on the kinetics of channel formation. Biophys J 1989; 55: 393–405.PubMedCrossRefGoogle Scholar
  38. 38.
    Rauch G, Gambale F, Montai M. Tetanus toxin channel in phosphatidylserine planar bilayers: conductance states and pH dependence. Europ Biophys J 1990; 18: 79–83.Google Scholar
  39. 39.
    Boquet P, Duflot E, Hauttecoeur B. Low pH induces a hydrophobic domain in the tetanus toxin molecule. Europ J Biochem 1984; 144: 339–344.PubMedCrossRefGoogle Scholar
  40. 40.
    Montecucco C, Schiavo G, Brunner J, Duflot E, Boquet P, Roa M. Tetanus toxin is labeled with photoactivatable phospholipids at low pH. Biochem 1986; 25: 919–924.CrossRefGoogle Scholar
  41. 41.
    Cabiaux V, Lorge P, Vandenbranden M, Falmagne P, Ruysschaert JM. Tetanus toxin induces fusion and aggregation of lipid vesicles containing phosphatidylinositol at low pH. Biochem Biophys Res Comm 1985; 128: 840–849.PubMedCrossRefGoogle Scholar
  42. 42.
    Simpson LL, Kamata Y, Kozaki S. Use of monoclonal antibodies as probes for the structure and biological activity of botulinum neurotoxin. J Pharmacol Exp Ther 1990; 255: 227–232.PubMedGoogle Scholar
  43. 43.
    Dreyer F, Schmitt A. Different effects of botulinum A toxin and tetanus toxin on the transmitter releasing process at the mammalian neuromuscular junction. Neurosci Letts 1981; 26: 307–311.CrossRefGoogle Scholar
  44. 44.
    Dreyer F, Schmitt A. Transmitter release in tetanus and botulinum A toxin-poisoned mammalian motor endplates and its dependence on nerve stimulation and temperature. Pflugers Archiv–Europ J Physiol 1983; 399: 228–234.CrossRefGoogle Scholar
  45. 45.
    Sellin LC, Thesleff S, Dasgupta BR. Different effects of types A and B botulinum toxin on transmitter release at the rat neuromuscular junction. Acta Physiol Scand 1983; 119: 127–133.PubMedCrossRefGoogle Scholar
  46. 46.
    Gansel M, Penner R, Dreyer F. Distinct sites of action of clostridial neurotoxins revealed by double-poisoning of mouse motor nerve terminals. Pflugers Archiv–Europ J Physiol 1987; 409: 533–539.CrossRefGoogle Scholar
  47. 47.
    Penner R, Neher E, Dreyer F. Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells. Nature 1989; 324: 76–78.CrossRefGoogle Scholar
  48. 48.
    Ahnert-Hilger G, Weller U, Dauzenroth ME, Haberman E. Gratzl M. The tetanus toxin light chain inhibits exocytosis. FEBS Letters 1986; 242: 245–248.CrossRefGoogle Scholar
  49. 49.
    Bittner MA, Holz RW. Effects of tetanus toxin on catecholamine release from intact and digitoninpermeabilized chromaffin cells. J Neurochem 1988; 51: 451–456.PubMedCrossRefGoogle Scholar
  50. 50.
    Bittner MA, Dasgupta BR, Holz RW. Isolated light chains of botulinum neurotoxins inhibit exocytosis. Studies in digitonin-permeabilized chromaffin cells. J Biol Chem 1989; 264: 10354–10360.PubMedGoogle Scholar
  51. 51.
    Stecher B, Weller U, Habermann E, Gratzl M, Ahnert-Hilger G. The light chain but not the heavy chain of botulinum A toxin inhibits exocytosis from permeabilized adrenal chromaffin cells. FEBS Letters 1989; 255: 391–394.PubMedCrossRefGoogle Scholar
  52. 52.
    Mochida S, Poulain B, Eisel U, Binz T, Kurazono H, Niemann H, Tauc L. Exogenous mRNA encoding tetanus or botulinum neurotoxins expressed in Aplysia neurons. Proc Natl Acad Sci USA 1990; 87: 7844–7848.PubMedCrossRefGoogle Scholar
  53. 53.
    Poulain B, Tauc L, Maisey EA, Wadsworth JDF, Mohan PM, Dolly JO. Neurotransmitter release is blocked intracellularly by botulinum neurotoxin, and this requires uptake of both toxin polypeptides by a process mediated by the larger chain. Proc Natl Acad Sci USA 1988; 85: 4090–4094.PubMedCrossRefGoogle Scholar
  54. 54.
    Considine RV, Bielicki JK, Simpson LL, Sherwin JR. Tetanus toxin attenuates the ability of phorbol myristate acetate to mobilize cytosolic protein kinase C in NG-108 cells. Toxicon 1990; 28: 13–19.PubMedCrossRefGoogle Scholar
  55. 55.
    Considine RV, Handler CM, Simpson LL, Sherwin JR. Tetanus toxin inhibits neurotensin-induced mobilization of protein kinase activity in NG-108 cells. Toxicon 1991; 29: 1351–1357.PubMedCrossRefGoogle Scholar
  56. 56.
    Simpson LL. A comparison of the pharmacological properties of Clostridium botulinum type Cl, and type C2 toxins. J Pharmacol Exp Ther 1982; 223: 695–701.PubMedGoogle Scholar
  57. 57.
    Ashton AC, Dolly JO. Microtubule-dissociating drugs and A23187 reveal differences in the inhibition of synaptosomal transmitter release by botulinum neurotoxins types A and B. J Neurochem 1991; 56: 827–835.PubMedCrossRefGoogle Scholar
  58. 58.
    Considine RV, Simpson LL. Cellular and molecular actions of binary toxins possessing ADP-ribosyltransferase activity. Toxicon 1991; 29: 913–936.PubMedCrossRefGoogle Scholar
  59. 59.
    Simpson LL. The binary toxin produced by Clostridium botulinum enters cells by receptor-mediated endocytosis to exert its pharmacologic effects. J Pharmacol Exp Ther 1989; 251: 1223–1228.PubMedGoogle Scholar
  60. 60.
    Simpson LL. Molecular basis for the pharmacological actions of Clostridium botulinum type C2 toxin. J Pharmacol Exp Ther 1984; 230: 665–669.PubMedGoogle Scholar
  61. 61.
    Aktories K, Barman M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E. Botulinum C2 toxin ADPribosylates actin. Nature 1986; 322: 390–392.PubMedCrossRefGoogle Scholar
  62. 62.
    Miyake M, Ohishi I. Response of tissue-cultured cynomolgus monkey kidney cells to botulinum C2 toxin. Microbiol Pathogen 1987; 3: 279–286.CrossRefGoogle Scholar
  63. 63.
    Reuner KH, Presek P, Boschek CB, Aktories K. Botulinum C2 toxin ADP-ribosylates actin and disorganizes the microfilament network in intact cells. Eur J Cell Biol 1987; 43: 134–140.PubMedGoogle Scholar
  64. 64.
    Zepeda H, Considine RV, Smith HL, Sherwin JR, Ohishi I, Simpson LL. The actions of the Clostridium botulinum binary toxin on the structure and function of Y-1 adrenal cells. J Pharmacol Exp Ther 1988; 246: 1183–1189.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Lance L. Simpson
    • 1
  1. 1.Division of Environmental Medicine and Toxicology Departments of Medicine and PharmacologyJefferson Medical CollegePhiladelphiaUSA

Personalised recommendations