Skip to main content

Transmitter Release in Aplysia: Applicability of Quantal Models and Evidence for Postsynaptic Control

  • Chapter
Botulinum and Tetanus Neurotoxins
  • 199 Accesses

Abstract

The use of molluscan ganglia for neurobiological studies combines multiple technical advantages with demonstrated versatility. These benefits derive not only from the accessibility of individual neurons, and consequent ease of study, but also from the network properties of these neuronal arrays. A well-recognized advantage is that many molluscan neurons are distinct individuals. As a consequence, using criteria such as shape, size, position, electrophysiology and connectivity, molluscan neurons in several species have been identified. The use of identified cells permits incrementally assembling a library of specific information by the repeated study of the same cell in successive preparations. It further permits examination of those specific features which distinguish individual neurons, rather than studying only those general properties which are common to classes of similar cells. Similarly, specific network properties which characterize interconnections of identified cells may be used to examine or contrast particular elements, permitting analyses not available in such systems as cultured cell lines, chromaffin cells, or synaptosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Poulain B, Tauc L, Maisey EA, Wadsworth JDF, Mohan PM, Dolly JO. Neurotransmitter release is blocked intracellularly by botulinum neurotoxin, and this requires uptake of both toxin polypeptides by a process mediated by the larger chain. Proc Natl Acad Sci USA 1988; 85: 4090–4094.

    Article  PubMed  CAS  Google Scholar 

  2. Poulain B, Mochida S, Weller U, Högy B, Habermann E, Wadsworth JDF, Shone C, Dolly JO, Tauc L. Heterologous combinations of heavy and light chains from botulinum neurotoxin A and tetanus toxin inhibit neurotransmitter release in Aplysia. J Biol Chem 1991; 266: 9580–9585.

    PubMed  CAS  Google Scholar 

  3. Strumwasser F. Types of information stored in single neurons. In: Wiersma CAG, ed. Invertebrate Nervous Systems. Chicago: University of Chicago Press, 1967: 291–319.

    Google Scholar 

  4. Gardner D. Bilateral symmetry and interneuronal organization in the buccal ganglia of Aplysia. Science 1971; 173: 550–553.

    Article  PubMed  CAS  Google Scholar 

  5. Gardner D, Kandel ER. Diphasic post-synaptic potential: a chemical synapse capable of mediating conjoint excitation and inhibition. Science 1972; 176: 675–678.

    Article  PubMed  CAS  Google Scholar 

  6. Gardner D, Kandel ER. Physiological and kinetic properties of cholinergic receptors activated by multi-action intemeurons in the buccal ganglia of Aplysia. J Neurophysiol 1977; 40: 333–348.

    PubMed  CAS  Google Scholar 

  7. Tauc L, Hoffmann A, Tsuji S, Hinzen DH, Faille L. Transmission abolished on a cholinergic synapse after injection of acetylcholinesterase into the presynaptic neurone. Nature 1974; 250: 496–498.

    Article  PubMed  CAS  Google Scholar 

  8. Gardner D. Voltage-clamp analysis of a self-inhibitory synaptic potential in the buccal ganglia of Aplysia. J Physiol (London) 1977; 264: 893–920.

    CAS  Google Scholar 

  9. White RL, Gardner D. Self-inhibition alters firing patterns of neurons in Aplysia buccal ganglia. Brain Res 1981; 209: 77–83.

    Article  PubMed  CAS  Google Scholar 

  10. Baux G, Tauc L. Presynaptic actions of curare and atropine on quantal acetylcholine release at a central synapse of Aplysia. J Physiol (London) 1987; 388: 665–680.

    CAS  Google Scholar 

  11. Baux G, Fossier P, Tauc L. Histamine and FLRFamide regulate acetylcholine release at an identified synapse in Aplysia in opposite ways. J Physiol (London) 1990; 429: 147–168.

    CAS  Google Scholar 

  12. Gardner D, Stevens CF. Rate-limiting step of inhibitory post-synaptic current decay in Aplysia buccal ganglia. J Physiol (London) 1980; 304: 145–164.

    CAS  Google Scholar 

  13. Gardner D. Time integral of synaptic conductance. J Physiol (London) 1980; 304: 181–191.

    CAS  Google Scholar 

  14. Simonneau M, Tauc L, Baux G. Quantal release of acetylcholine examined by current fluctuation analysis at an identified neuro-neuronal synapse of Aplysia. Proc Natl Acad Sci USA 1980; 77: 1661 1665.

    Google Scholar 

  15. Gardner D. Paired individual and mean postsynaptic currents recorded in four-cell networks of Aplysia. J Neurophysiol 1990; 63: 1226–1240.

    PubMed  CAS  Google Scholar 

  16. Gardner D. Sets of synaptic currents paired by common presynaptic or postsynaptic neurons. J Neurophysiol 1989; 61: 845–853.

    PubMed  CAS  Google Scholar 

  17. Gardner D. Membrane-potential effects on an inhibitory post-synaptic conductance in Aplysia buccal ganglia. J Physiol (London) 1980; 304: 165–180.

    CAS  Google Scholar 

  18. Del Castillo J, Katz B. Quantal components of the end-plate potential. J Physiol (London) 1980; 124: 560–573.

    Google Scholar 

  19. Bekkers JM, Stevens CF. Presynaptic mechanism for long-term potentiation in the hippocampus. Nature 1990; 346: 724–729.

    Article  PubMed  CAS  Google Scholar 

  20. Malinow R, Tsien RW. Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature 1990; 346: 177–180.

    Article  PubMed  CAS  Google Scholar 

  21. Redman S. Quantal analysis of synaptic potentials in neurons cf the central nervous system. Physiol Rev 1990; 70: 165–198.

    PubMed  CAS  Google Scholar 

  22. Gardner D. Presynaptic transmitter release is specified by postsynaptic neurons of Aplysia buccal ganglia. J Neurophysiol 1991; 66: 2150–2154.

    PubMed  CAS  Google Scholar 

  23. Simonneau M, Taue L. Properties of miniature postsynaptic currents during depolarization-induced release at a cholinergic neuroneuronal synapse. Cell Molec Neurobiol 1987; 7: 175–189.

    Article  PubMed  CAS  Google Scholar 

  24. Gardner D. Static Determinants of Synaptic Strength. In: Gardner D, ed. The Neurobiology of Neural Networks. Cambridge: MIT Press, 1993 in press.

    Google Scholar 

  25. Faber DS, Korn H. Applicability of the coefficient of variation method for analyzing synaptic plasticity. Biophys J 1991; 60: 1288–1294.

    Article  PubMed  CAS  Google Scholar 

  26. Korn H, Faber DS. Quantal analysis and synaptic efficacy in the CNS. Trends in Neurosci 1991; 14: 439–445.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gardner, D. (1993). Transmitter Release in Aplysia: Applicability of Quantal Models and Evidence for Postsynaptic Control. In: DasGupta, B.R. (eds) Botulinum and Tetanus Neurotoxins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9542-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9542-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9544-8

  • Online ISBN: 978-1-4757-9542-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics