Molecular Basis of Human Blood Group Antigens pp 189-225 | Cite as
RH Blood Groups and Rh-Deficiency Syndrome
Chapter
Abstract
The discovery of the RH blood group system by Levine and his colleagues (1939, 1941a, b) was associated with the historical description of a fetomaternal alloimmunization responsible for the hemolytic disease of the newborn. The intrauterine fetal death was caused by a maternal antibody directed against an antigen on the surface of her infant’s red cells which was inherited from the father. This antibody had crossed the placenta and destroyed the fetal red cells.
Keywords
Blood Group Blood Group Antigen Membrane Skeleton Blood Group System Antipeptide Antibody
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Agre, P., and Cartron, J.-P., 1991, Molecular biology of Rh antigens. Blood 78: 551–563.PubMedGoogle Scholar
- Anstee, D. J., Holmes, C. H., Judson, P. A., and Tanner, M. J. A., 1992, Use of monoclonal antibodies to determine the tissue distribution of red cell surface antigens on human cells and tissues, Protein Blood Group Antigens of the Human Red Cell (P. Agre and J.-P. Cartron, eds.), pp. 170–181, Johns Hopkins University Press, Baltimore.Google Scholar
- Arce, M. A., Thompson, E. S., Wagner, S., Coyne, K. E., Ferdman, B. A., and Lublin, D. M., 1993, Molecular cloning of RhD cDNA derived from a gene present in RhD-positive, but not RhD-negative individuals, Blood 82: 651–655.PubMedGoogle Scholar
- Avent, N. D., Judson, P. A., Parsons, S. F., Mallinson, G., Anstee, D. J., Tanner, M. J. A., Evans, P. R., Hodges, E. E., Maciver, A. G., and Holmes, C., 1988a, Monoclonal antibodies that recognize different membrane proteins that are deficient in Rh-null human erythrocytes, Biochem. J. 251: 499–505.PubMedGoogle Scholar
- Avent, N. D., Ridgwell, K., Mawby, W. J., Tanner, M. J. A., Anstee, D. J., and Kumpel, B., 1988b, Protein-sequence studies of Rh-related polypeptides suggest the presence of at least two groups of proteins which associated in the human red-cell membrane, Biochem. J. 256: 1043–1046.PubMedGoogle Scholar
- Avent, N. D., Ridgwell, K., Tanner. M. J. A., and Anstee, D. J., 1990, cDNA cloning of a 30 kDa erythrocyte membrane protein associated with Rh (Rhesus)-blood-group-antigen expression, Biochem. J. 271: 821–825.Google Scholar
- Avent, N. D., Butcher, S. K., Liu. W., Mawby, W. J., Mallinson, G., Parsons, S. F., Anstee, D. J., and Tanner, M. J. A., 1992. Localization of the C termini of the Rh (Rhesus) polypeptides to the cytoplasmic face of the human erythrocyte membrane, J. Biol. Chem. 267: 15134–15139.Google Scholar
- Bailly, P., Cartron, J.-P., Wang, D., and Johnson, R. M., 1992, Hereditary stomatocytosis and Rh-deficient patients exhibit distinct molecular defects, Blood 50: 1624–1626.Google Scholar
- Bailly, P., Hermand, P., Callebaut, I., Sonneborn, H. H., Khamlichi, S., Mornon, J. P., and Cartron, J.-P., 1994, The LW blood group glycoprotein is homologous to intercellular adhesion molecules, Proc. Natl. Acad. Sci. USA 1: 5306–5310.CrossRefGoogle Scholar
- Ballas, S., Clark, M. R., Mohandas, N., Colfer, H. F., Caswell, M. S., Bergen, M. O., Perkins. H. A., and Shohet, S. B., 1984, Red cell membranes and cation deficiency in Rh-null syndrome, Blood 63: 1046–1055.Google Scholar
- Ballas, S. K., Flynn, J. C., Pauline, L. A., and Murphy, D. L., 1986, Erythrocyte Rh antigens increase with red cell age, Am. J. Hematol. 23: 19–24.PubMedCrossRefGoogle Scholar
- Basu, M. K., Flamm, M., Schacter, D., Bertles, J. F., and Maniatis, A., 1980, Effects of modulating erythrocyte membrane cholesterol, Biochem. Biophys. Res. Commun. 95: 887–893.PubMedCrossRefGoogle Scholar
- Bennett, P. R., Le Van Kim, C., Colin, Y., Warwick, R. M., Chérif-Zahar, B., Fisk, N. M., and Cartron, J.-P., 1993, Prenatal determination of fetal RhD type by DNA amplification, N. Engl. J. Med. 329: 607–610.PubMedCrossRefGoogle Scholar
- Bennett, V., 1990, Spectrin-based membrane-skeleton: A multipotential adaptor between plasma membrane and cytoplasm, Physiol. Rev. 70: 1029–1065.PubMedGoogle Scholar
- Blanchard, D., Bloy, C., Hermand, P., Cartron, J.-P., Saboori, A., Smith, B. L., and Agre, P., 1988. Two-dimensional iodopeptide mapping demonstrates erythrocyte Rh D, c. and E polypeptides are structurally homologous but nonidentical. Blood 72: 1424–1427.Google Scholar
- Blancher, A., Ruffié, J., and Socha, W. W., 1993, The R-C-E-F blood group system of chimpanzee: Serology and genetics, J. Med. Primatol. 22: 13–18.PubMedGoogle Scholar
- Bloy, C., Blanchard, D., Dahr, W., Beyreuther, K., Salmon, C., and Cartron, J.-P., 1988, Determination of the NH,-terminal sequence of human red cell Rh(D) polypeptide and demonstration that the Rh(D), (c) and (E) antigens are carried by distinct polypeptide chains, Blood 72: 661–666.PubMedGoogle Scholar
- Bloy, C., Blanchard, D., Hermand, P., Kordowicz, M., Sonneborn, H. H., and Cartron, J.-P., 1989, Properties of the blood group LW glycoprotein and preliminary comparison with Rh proteins, Mol. Immunol. 26: 1013–1019.PubMedCrossRefGoogle Scholar
- Bloy, C., Hermand, P., Blanchard, D., Chérif-Zahar, B., Goossens, D., and Cartron, J.-P., 1990a, Surface orientation and antigen properties of Rh and LW polypeptides of the human erythrocyte membrane, J. Biol. Chem. 265: 21482–21487.PubMedGoogle Scholar
- Bloy, C., Hermand, P., Chérif-Zahar, B., Sonneborn, H., and Cartron, J.-P., 1990b, Comparative analysis by two-dimensional iodopeptide mapping of the RhD protein and LW glycoprotein, Blood 75: 2245–2249.PubMedGoogle Scholar
- Blunt, T., Steers, F., Daniels, G., and Carritt, B., 1994, Lack of RHC/E expression in the Rhesus D-phenotype is the result of a gene deletion, Ann. Hum. Genet. 58: 19–24.PubMedCrossRefGoogle Scholar
- Brown, E., Hooper, L., Ho, T., and Gresham, H., 1990, Integrin-associated protein: A 50 kDa plasma membrane antigen physically and functionally associated with integrins, J. Cell Biol. 111: 2785–2794.PubMedCrossRefGoogle Scholar
- Campbell, I. G., Freemont, P. S., Foulkes, W., and Trowsdale, J., 1992, An ovarian tumor marker with homology to vaccinia virus contains an IgV-like region and multiple transmembrane domains, Cancer Res. 52: 5416–5420.PubMedGoogle Scholar
- Cartron, J.-P., and Agre, P., 1993, Rh blood group antigens: Protein and gene structure, Semin. Hematol. 30: 193–208.PubMedGoogle Scholar
- Cartron, J. P., and Rahuel, C., 1992, Human erythrocyte glycophorins: protein and gene structure analysis, Transfus. Med. Rev. 6: 63–92.PubMedCrossRefGoogle Scholar
- Chaudhuri, A., Polyakova, J., Zbrezzna, V., Gulati, W. K., and Pogo, A. O., 1993, Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. Proc. Natl. Acad. Sci. USA. 90: 10793–10797.PubMedCrossRefGoogle Scholar
- Chaudhuri, A., Zbrezezna, V., Poliakova, J., Pogo, A. O., Hesselgesser, J., and Horuk, R., 1994, Expression of the Duffy antigen in K562 cells. Evidence that it is the human erythrocyte chemokine receptor, J. Biol. Chem. 269: 7835–7838.PubMedGoogle Scholar
- Chérif-Zahar, B., Bloy, C., Le Van Kim, C., Blanchard, D., Bailly, P., Hermand, P., Salmon, C., Cartron, J.-P., and Colin, Y., 1990, Molecular cloning and protein structure of a human blood group Rh polypeptide, Proc. Natl. Acad. Sci. USA 87: 6243–6247.PubMedCrossRefGoogle Scholar
- Chérif-Zahar, B., Mattéi, M. G., Le Van Kim, C., Bailly, P., Cartron, J.-P., and Colin, Y., 1991, Localization of the human Rh blood group gene structure to chromosome 1p34.3—Ip36.I region by in situ hybridization, Hum. Genet. 86: 398–400.PubMedCrossRefGoogle Scholar
- Chérif-Zahar, B., Le Van Kim, C., Raynal, V., D’Ambrosio, A. M., Bailly, P., Cartron, J.-P., and Colin, Y., 1993, Structure and expression of the RH locus in the Rh-deficiency syndrome, Blood 82: 656–662.PubMedGoogle Scholar
- Chérif-Zahar, B., Le Van Kim, C., Rouillac, C., Raynal, V., Cartron, J.-P., and Colin, Y., 1994a, Organization of the gene encoding the human blood group RhCcEe antigens and characterization of the promoter region, Genomics 19: 68–74.PubMedCrossRefGoogle Scholar
- Chérif-Zahar, B., Raynal, V., D’Ambrosio, A. M., Cartron, J. P., and Colin, Y., 1994b, Molecular analysis of the structure and expression of the RH locus in individuals carrying the D-, Dc— and DC“— gene complexes, Blood,in press.Google Scholar
- Colin, Y., Chérif-Zahar, B., Le Van Kim, C., Raynal, V., Van Huffel, V., and Cartron, J.-P., 1991, Genetic basis of the RhD-positive and RhD-negative blood group polymorphism, Blood 78: 2747–2752.PubMedGoogle Scholar
- Connor, J., and Schroit, A. J., 1988, Transbilayer movement of phosphatidylserine in erythrocytes: Inhibition of transport and preferential labeling of a 31.000-dalton protein by sulfhydryl reactive reagents, Biochemistry 27: 848–851.PubMedCrossRefGoogle Scholar
- Connor, J., Bar-Eli, M., Gillum, K. D., and Schroit, A. J., 1992, Evidence for a structurally homologous Rh-like polypeptide in Rh, erythrocytes, J. Biol. Chem. 267: 26050–26055.PubMedGoogle Scholar
- Dahr, W., Kordowicz, M., Moulds, J., Gielen, W., Lebeck, L., and Krueger, J., 1987, Characterization of the Ss sialoglycoprotein and its antigens in Rh-null erythrocytes, Blut 54: 13–24.PubMedCrossRefGoogle Scholar
- Devaux, P. F., 1991, Static and dynamic lipid asymmetry in cell membranes, Biochemistry 30: 1163–1173.PubMedCrossRefGoogle Scholar
- De Vetten, M. P., and Agre, P., 1988, The Rh polypeptide is a major fatty acid acylated erythrocyte membrane protein, J. Biol. Chem. 263: 18193–18196.PubMedGoogle Scholar
- Ervasti, J. M., and Campbell, K. P., 1992, Membrane organization of the dystrophin—glycoprotein complex, Cell 66: 1121–1131.CrossRefGoogle Scholar
- Ervasti, J. M., Ohlendieck, K., Kahl, S. D., Gaver, M. G., and Campbell, K. P., 1990, Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle, Nature 345: 315–319.PubMedCrossRefGoogle Scholar
- Eyers, S., Ridgwell, K., Mawby, W. J., and Tanner, M. J. A., 1994, Topology and organization of the human Rh (Rhesus) blood group-related polypeptides, J. Biol. Chem. 269: 6417–6423.PubMedGoogle Scholar
- Falkenburg, J. H. F., Fibbe, W. E., van der Vaart-Duinkerken, N., Nichols, M. E., Rubinstein, P., and Jansen, J., 1985, Human erythroid progenitor cells express rhesus antigens, Blood 66: 660–663.PubMedGoogle Scholar
- Fisher, R. A., cited by Race, R. R., 1944, An ‘incomplete“ antibody in human serum. Nature 153: 771–772.Google Scholar
- Fisher, R. A., and Race, R. R., 1946, Rh gene frequencies in Britain, Nature 157: 48–49.PubMedCrossRefGoogle Scholar
- Fukuda, M., 1993, Molecular genetics of the glycophorin A gene cluster. Sem. Hematol. 30: 138–151.Google Scholar
- Gahmberg, C. G., 1982, Molecular identification of the human Rho(D)-antigen. FEBS Lett. 140: 93–97.PubMedCrossRefGoogle Scholar
- Gahmberg, C. G., 1983, Molecular characterization of the human red-cell Rho(D) antigen, EMBO J. 2: 223–227.PubMedGoogle Scholar
- Gahmberg, C. G., and Karhi, K. K., 1984, Association of Rho(D) polypeptides with the membrane skeleton in Rho(D)-positive human red cells, J. Immunol. 133: 334–337.PubMedGoogle Scholar
- Gardner, B., Anstee, D. J., Mawby, W. J., Tanner, M. J. A., and von dem Borne, A. E. G., 1991, The abundance and organization of polypeptides associated with antigens of the Rh blood group system, Transfus. Med. 1: 77–85.PubMedCrossRefGoogle Scholar
- Green, F. A., 1967, Erythrocyte membrane sulfhydryl groups and Rh antigen activity. Immunochemistry 4: 247–257.PubMedCrossRefGoogle Scholar
- Green, F. A., 1968, Phospholipid requirement for Rh antigen activity, J. Biol. Chem. 243: 5519–5521.PubMedGoogle Scholar
- Green, F. A., 1972, Erythrocyte membrane lipids and Rh antigen activity, J. Biol. Chem. 247: 881–887.PubMedGoogle Scholar
- Green, F. A., Hui, H. L., Green, L. A. D., Heubusch, P., and Pudlak, W., 1984. The phospholipid requirement for Rho(D) antigen activity: Mode of inactivation by phospholipases and protection by anti-Rho(D) antibody, Mol. Immunol. 21: 433–438.PubMedCrossRefGoogle Scholar
- Hartel-Schenk, S., and Agre, P., 1992, Mammalian red cell membrane Rh polypeptides are selectively palmitoylated subunits of a macromolecular complex, J. Biol. Chem. 267: 5569–5574.PubMedGoogle Scholar
- Hermand, P., Mouro, I., Huet, M., Bloy, C., Suyama, K., Golstein, J., Cartron, J.-P., and Bailly, P., 1993, Immunochemical characterization of Rh proteins with antibodies raised against synthetic peptides, Blood 82: 669–676.PubMedGoogle Scholar
- Horuk, R., Chitnis, C. E., Darbonne, W. C., Colby, T. J., Rybicki, A., Hadley, T. J., and Miller, L. H., 1993, A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor, Science 261: 1182–1184.PubMedCrossRefGoogle Scholar
- Hughes-Jones, N. C., Gardner, B., and Lincoln, P. J., 1971, Observations of the number of available c, D, and E antigen sites on red cells, Vox Sang. 21: 210–216.CrossRefGoogle Scholar
- Hughes-Jones, N. C., Green, E. J., and Hunt, V. A., 1975, Loss of Rh antigen activity following the action of phospholipase A2 on red cell stroma, Vox Sang. 29: 184–191.PubMedCrossRefGoogle Scholar
- Hyland, C. A., Wolter, L. C., Liew, Y. W., and Saul, A., 1994a, A southern analysis of Rh blood group genes: association between restriction fragment length polymorphism and Rh serotypes, Blood 83: 566–572.PubMedGoogle Scholar
- Hyland, C. A., Wolter, L. C., and Saul, A., I994b, Three unrelated RhD gene polymorphisms identified among blood donors with Rhesus CCee (r’r’) phenotypes. Blood 84: 321–324.Google Scholar
- Issitt, P. D., 1989, The Rh blood group system, 1988: Eight new antigens in nine years and some observations on the biochemistry and genetics of the system. Transfus. Med. Rev. 3: 1–12.PubMedCrossRefGoogle Scholar
- Kajii, E., Umeneshi, F., Iwamoto, S., and lkemoto, S., 1993, Isolation of a new cDNA clone encoding an Rh polypeptide associated with Rh blood group system, Hum Genet. 91: 157–162.PubMedCrossRefGoogle Scholar
- Kuypers, F., van Linde-Sibenius-Trip, M., Roelofsen, B., Tanner, M. J. A., Anstee, D. J., and Opden Kamp, J. A. F., 1984. Rh-null human erythrocytes have an abnormal membrane phospholipid organization, Biochem. J. 221: 93l - 934.Google Scholar
- Landsteiner, K., and Wiener, A. S., 1940, An agglutinable factor in human blood recognized by immune sera for rhesus blood, Proc. Soc. Exp. Biol. Med. 43: 223.Google Scholar
- Lauf, P. K., and Joiner, C. H., 1976, Increased potassium transport and ouabain binding in human Rh-null red blood cells, Blood 48: 457–468.PubMedGoogle Scholar
- Le Van Kim, C., Chérif-Zahar, B., Raynal, V., Lopez, M., Cartron, J.-P., and Colin, Y., 1992a, Multiple Rh mRNAs isoforms are produced by alternative splicing and poly(A) site choice, Blood 80: 1074–1078.Google Scholar
- Le Van Kim, C., Mouro, I., Chérif-Zahar, B., Raynal, V., Cherrier, C., Cartron, J.-P., and Colin, Y., 1992b, Molecular cloning and primary structure of the human blood group RhD polypeptide. Proc. Natl. Acad. Sci. USA 89: 10925–10929.CrossRefGoogle Scholar
- Le Van Kim, C., Mouro, I., Brossard, Y., Chavinié, J., Cartron, J. P., and Colin, Y., 1994. PCRbased determination of Rhc and RhE status of fetuses at risk of Rhc and RhE haemolytic disease, Br. J. Haematol., 88: 193–195.CrossRefGoogle Scholar
- Levine, P., and Stetson, R. E., 1939, An unusual case of intragroup agglutination, J. Am. Med. Assoc. 113: 126–127.CrossRefGoogle Scholar
- Levine, P., Burnham, L., Katzin, E. M., and Vogel, P., 1941a, The role of isoimmunization in the pathogenesis of erythroblastosis fetalis, Am. J. Obstet. Gynecol. 42: 925–937.Google Scholar
- Levine, P., Katzin, E. M., and Burnham, L., 1941b, Isoimmunization in pregnancy, its possible bearing on the etiology of erythroblastosis fetalis, J. Am. Med. Assoc. 116: 825–827.CrossRefGoogle Scholar
- Levine, P., Celano, M., Fenichel, R., Pollack, W., and Singher, H., 1961, A ‘D-like’ antigen in rhesus monkey, human Rh positive and human Rh negative red blood cells, J. Immunol. 87: 747–752.PubMedGoogle Scholar
- Levine, P., Cellano, M. J., Wallace, J., and Sanger, R., 1963, A human “D-like” antibody. Nature 198: 596–597.CrossRefPubMedGoogle Scholar
- Lindberg, F. P., Lublin, D. M., Telen, M. J., Veile, R. A., Miller, Y. E., Donis-Keller, H., and Brown, E. J., 1994, Rh-related antigen CD47 is the signal transducer integrin-associated protein, J. Biol. Chem. 269: 1567–1570.PubMedGoogle Scholar
- Lo, Y. M. D., Bowell, P. J., Selinger, M., Mackenzie, I. Z., Chamberlain, P., Gillmer, M. D. G., Littlewood, T. J., Fleming, K. A., and Wainscoat, J. S., 1993, Prenatal determination of fetal RhD status by analysis of peripheral blood of rhesus negative mothers, Lancet 341: 1147–1148.PubMedCrossRefGoogle Scholar
- Lomas, C., McColl, K., and Tippett, P., 1993, Further complexities of the Rh antigen D disclosed by testing category DII cells with monoclonal anti-D, Transfus. Med. 3: 67–69.CrossRefPubMedGoogle Scholar
- Lorusso, D. J., and Green, F. A., 1975, Reconstitution of Rh(D) antigen activity from human erythrocyte membranes solubilized by deoxycholate, Science 188: 66–67.PubMedCrossRefGoogle Scholar
- McGuire, M., Smith, B. L., and Agre, P., 1988, Distinct variants of erythrocyte protein 4.1 inherited in linkage with elliptocytosis and Rh type in three Caucasian families, Blood 72: 287–293.PubMedGoogle Scholar
- Mallinson, G., Martin, P. G., Anstee, D. J., Tanner, M. J. A., Merry, A. H., Tills, D., and Sonneborn, H. H., 1986, Identification and partial characterization of the human erythrocyte membrane component(s) which express the antigens of the LW blood group system. Biochem. J. 234: 649–652.PubMedGoogle Scholar
- Mallinson, G., Anstee, D. J., Avent, N. D., Ridgwell, K., Tanner, M. J. A., Daniels, G. L., Tippett, P., and Von dem Borne, A. E. G., 1990, Murine monoclonal antibody MB-2D10 recognizes Rh-related glycoproteins in the human red cell membrane, Transfusion 30: 222–225.PubMedCrossRefGoogle Scholar
- Marsh, W. L., 1983, Deleted antigens of the Rhesus and Kell blood groups: Association with cell membrane defects, in Blood Group Antigens and Disease ( G. Garratty, ed.), pp. 165–185, American Association of Blood Banks, Arlington, VAGoogle Scholar
- Marsh, W. L., Chaganti, R. S. K., Gardner, F. G., Mayer, K., Nowell, P. C., and German, J., 1974, Mapping human autosomes: Evidence supporting assignment of Rhesus to the short arm of chromosome no. 1, Science 184: 966–968.CrossRefGoogle Scholar
- Merlie, J. P., 1984, Biogenesis of the acetylcholine receptor, a multisubunit integral membrane protein, Cell 36: 573–575.PubMedCrossRefGoogle Scholar
- Merry, A. H., Thomson, E. E., Anstee, D. J., and Stratton, F., 1984, The quantification or erythrocyte antigen sites with monoclonal antibodies, Immunology 51: 793–800.PubMedGoogle Scholar
- Miller, Y. E., Daniels, G. L., Jones, C., and Palmer, D. K., 1987, Identification of a cell-surface antigen produced by a gene on human chromosome 3 (cenq22) and not expressed by Rh-null cells, Am. J. Hum. Genet. 41: 1061–1070.PubMedGoogle Scholar
- Mollison, P. L., Engelfriet, C. P., and Contreras, M., 1992. Blood Transfusion in Clinical Medicine, 9th ed., Blackwell, Oxford.Google Scholar
- Moore, S., and Green, C., 1987, The identification of specific Rhesus polypeptide blood group ABH active glycoprotein complexes in the human red cell membrane, Biochem. J. 244: 735–741.PubMedGoogle Scholar
- Moore, S., Woodrow, C. F., and McClelland, D. B. L. 1982, Isolation of membrane components associated with human red cell antigens Rho(D), (c), (E), and Fy’. Nature 295: 529–531.PubMedCrossRefGoogle Scholar
- Mouro, I., Colin, Y., Chérif-Zahar, B., Cartron, J.-P., and Le Van Kim, C., 1993, Molecular genetic basis of the human Rhesus blood group system. Nature Genet. 5: 62–65.PubMedCrossRefGoogle Scholar
- Mouro, I., Le Van Kim, C., Chérif-Zahar, B., Salvignol, I., Blancher, A., Cartron, J.-P., and Colin, Y., 1994a. Molecular characterization of the Rh-like locus and gene transcripts from the rhesus monkey (Macaca mulatta), J. Mol. Evol. 38: 169–176.PubMedCrossRefGoogle Scholar
- Mouro, I., Le Van Kim, C., Rouillac, C., van Rhenen, D. J., Le Pennec, P. Y., Cartron, J.-P., and Colin, Y., 1994b, Rearrangements of the blood group RhD gene associated with the D’ category phenotype, Blood 83: 1129–1135.PubMedGoogle Scholar
- Nash, R., and Shojania, A. M., 1987, Hematological aspect of Rh deficiency syndrome: A case report and review of the literature. Am. J. Hematol. 24: 267–275.PubMedCrossRefGoogle Scholar
- Palek, J., and Jarolim, P., 1993, Clinical expression and laboratory detection of red blood cell membrane protein mutations, Semin. Hematol. 30: 249–283.PubMedGoogle Scholar
- Paradis, G., Bazin, R., and Lemieux, R., 1986, Protective effect of the membrane skeleton on the immunologic reactivity of the human red cell Rho(D) antigen. J. Immunol. 137: 240–244.PubMedGoogle Scholar
- Poss, M. T., Swanson. J. L., Telen, M. J., Lasky, L. C., and Vallera, D. A., 1993, Monoclonal antibody recognizing a unique Rh-related specificity, Vox Sang. 64: 231–239.Google Scholar
- Race, R. R., 1965, Modern concepts of the blood group systems, Ann. N. Y. Acad. Sci. 127: 884–891.CrossRefGoogle Scholar
- Race, R. R., and Sanger, R., 1975, Blood Groups in Man, 6th ed. Blackwell, Oxford.Google Scholar
- Rearden, A., and Masouredis, S. P., 1977, Blood group D antigen content of nucleated red cell precursors, Blood 50: 981–986.PubMedGoogle Scholar
- Ridgwell, K., Roberts, S. J., Tanner, M. J. A., and Anstee, D. J., 1983. Absence of two membrane proteins containing extracellular thiol groups in Rh-null human erythrocytes, Biochem. J. 213: 267–269.PubMedGoogle Scholar
- Ridgwell, K., Tanner, M. J. A., and Anstee, D. J., 1984, The Rhesus(D) polypeptide is linked to the human erythrocyte cytoskeleton, FEBS Lett. 174: 7–10.PubMedCrossRefGoogle Scholar
- Ridgwell, K., Spun, N. K., Laguda, B., Maggeoch, C., Avent, N. D., and Tanner, M. J. A., 1992. Isolation of cDNA clones for a 50 kDa glycoprotein of the erythrocyte membrane associated with Rh (Rhesus) blood-group antigen expression, Biochem. J. 287: 223–228.PubMedGoogle Scholar
- Ridgwell, K., Eyers, S., Mawby, W. J., Anstee, D. J., and Tanner, M. J. A., 1994, Studies on the glycoprotein associated with Rh (Rhesus) blood group antigen expression in the human red blood cell membrane, J. Biol. Chem. 269: 6410–6416.PubMedGoogle Scholar
- Saboori, A. M., Smith, B. L., and Agre, P., 1988, Polymorphism in the Mr 32,000 Rh protein purified from Rh(D) positive and negative erythrocytes, Proc. Natl. Acad. Sci. USA 85: 4042–4045.PubMedCrossRefGoogle Scholar
- Saboori, A., Denker, B. M., and Agre, P., 1989, Isolation of proteins related to the Rh polypeptides from non-human erythrocytes, J. Clin. Invest. 83: 187–191.PubMedCrossRefGoogle Scholar
- Salvignol, I., Calvas, P., Socha, W. W., Colin, Y., Le Van Kim, C., Bailly, P., Ruffié, J., Cartron, J. P., and Blancher, A., 1994, Structural analysis of the Rh-like blood group gene products in non human primates. Immuno genetics,in press.Google Scholar
- Salvignol, I., Blancher, A., Calvas, P., Socha, W. W., Colin, Y., Cartron, J.-P., and Ruffié, J., 1993, Relationship between chimpanzee Rh-like genes and the R-C-E-F blood group system, J. Med. Primatol. 32: 19–28.Google Scholar
- Schmidt, P. J., and Vos, G. H., 1967, Multiple phenotypic abnormalities associated with Rh-null (—), Vox Sang. 13: 18–20.PubMedCrossRefGoogle Scholar
- Schroit, A. J., Bloy, C., Connor, J., and Cartron, J.-P., 1990, Involvement of Rh blood group polypeptides in the maintenance of aminophospholipid asymmetry, Biochemistry 29: 10303–10306.PubMedCrossRefGoogle Scholar
- Schwartz, M. A., Brown, E., and Fazeli, B., 1993, A 50 kDa integrin-associated protein is required for integrin-regulated calcium entry in endothelial cells, J. Biol. Chem. 268: 19931–19934.PubMedGoogle Scholar
- Shinitzky, M., and Souroujon, M., 1979, Passive modulation of blood group antigens, Proc. Natl. Acad. Sci. USA 76: 4438–4440.PubMedCrossRefGoogle Scholar
- Sieff, C., Bicknell, D., Caine, G., Robinson, J., Lam, G., and Greaves, M. F., 1982, Changes in cell surface antigen expression during hemopoietic differentiation, Blood 60: 703–713.PubMedGoogle Scholar
- Sistonen, P., 1984, Linkage of the LW blood group locus with the complement C3 and Lutheran blood group loci, Ann. Hum. Genet. 48: 239–242.PubMedCrossRefGoogle Scholar
- Smith, R. E., and Daleke, D. L., 1990, Phosphatidylserine transport in Rh-null erythrocytes, Blood 76: 1021–1027.PubMedGoogle Scholar
- Socha, W. W., and Rufflé, J., 1983, The rhesus system, in Blood Groups of Primates: Theory, Practice and Evolutionary Meaning, pp. 75–90. Liss. New York.Google Scholar
- Sonneborn, H. H., Ersat, M., Tills, D., Lomas, C. G., Gorick, B. D., and Hughes-Jones, N. C., 1990, Comparison of the reactions of the Rh-related murine monoclonal antibodies BS58 and R6A, Vox Sang. 58: 219–223.PubMedCrossRefGoogle Scholar
- Springer, T. A., 1990, Adhesion receptors of the immune system, Nature 346: 425–434.PubMedCrossRefGoogle Scholar
- Sturgeon, P., 1970. Hematological observations on the anemia associated with blood type Rh-null. Blood 36: 310–320.PubMedGoogle Scholar
- Sussman, J. J., Bonifacino, J. S., Lippincott-Schwartz, J., Weissman, A., Saito, T., Klausner, R. D., and Ashwell, J. D., 1988, Failure to synthesize the T cell CD3-zeta chain. Cell 52: 85–95.PubMedCrossRefGoogle Scholar
- Suyama, K., and Goldstein, J., 1988, Antibody produced against isolated Rh(D) polypeptide reacts with other Rh-related antigens, Blood 72: 1622–1626.PubMedGoogle Scholar
- Suyama, K., and Goldstein, J., 1992, Membrane orientation of the Rh(D) polypeptide and partial localization of its epitope-containing domain, Blood 79: 808–812.PubMedGoogle Scholar
- Suyama, K., Goldstein, J. Aebersold, R., and Kent, S., 1991, Regarding the size of Rh proteins, Blood 77: 411–412.Google Scholar
- Suyama, K., Roy, S., Lunn, R., and Goldstein, J., 1993. Expression of the 32-Kd polypeptide of the Rh antigen, Blood 82: 1006–1009.PubMedGoogle Scholar
- Szymanski, I. O., Araszkiewicz, P., Odgren, P., and Snyder, L. M., 1989, Decreased amount of the Rh antigen D in hereditary spherocytosis, Br. J. Haematol. 73: 537–540.PubMedCrossRefGoogle Scholar
- Tippett, P., 1986, A speculative model for the Rh blood groups, Ann. Hum. Genet. 50: 241–247.PubMedCrossRefGoogle Scholar
- Tippett, P., 1988, Subdivisions of the Rh(D) antigen, Med. Lab. Sci. 45: 88.PubMedGoogle Scholar
- Tippett, P., 1990a, Regulator genes affecting red cell antigens, Transfus. Med. Rev. 4: 56–68.PubMedCrossRefGoogle Scholar
- Tippett, P., 1990b. Serologically defined Rh determinants, J. Immunogenet. 17: 247–257.PubMedCrossRefGoogle Scholar
- Trask, B., Fertitta, A., Christensen, M., Youngblom, J., Bergmann, A., Copeland, A., de Jong, P., Mohrenweiser, H., Olsen, A., Carrano, A., and Tynan, K., 1993, Fluorescence in situ hybridization mapping of human chromosome 19: Cytogenetic band location of 540 cosmids and 70 genes or DNA markers, Genomics 15: 133–145.PubMedCrossRefGoogle Scholar
- Umenishi, F., Kajii, E., and Ikemoto, S., 1994, Molecular analysis of Rh polypeptides in a family with RhD-positive and RhD-negative phenotypes. Biochem. J. 299: 207–211.PubMedGoogle Scholar
- Victoria, E. J., Branks, M. J., and Masouredis, S. P., 1986, Rh antigen immunoreactivity after histidine modification, Mol. Immunol. 23: 1039–1044.PubMedCrossRefGoogle Scholar
- Von dem Borne, A. E. G., Bos, M. J. E., Lomas, C., Tippett, P., Bloy, C., Hermand, P., Cartron, J.-P., Admiraal, L. G., van de Graaf, J., and Overbeeke, M. A. M., 1990, Mutine monoclonal antibodies against a unique determinant of erythrocytes related to Rh and U antigens, Br. J. Haematol. 75: 254–261.CrossRefGoogle Scholar
- Wiener, A. S., 1944, The Rh series of allelic genes, Science 100: 595–597.PubMedCrossRefGoogle Scholar
- Wiener, A. S., Moor-Jankowski, J., and Gordon, E. B., 1964, Blood groups of apes and monkeys. IV. The Rh-Hr blood types of anthropoid apes, Am. J. Hum. Genet. 16: 246–253.PubMedGoogle Scholar
- Williams, A. F., and Barclay, A. N., 1988, The immunoglobulin superfamily. Domains for cell surface recognition. Annu. Rev. Immunol. 6: 381–405.PubMedCrossRefGoogle Scholar
- Williams, A. F., Davis, S. J., and Barclay, A. N., 1989, Structural diversity in domains of the immunoglobulin superfamily, Cold Spring Harbor Symp. Quant. Biol. 54: 637–647.PubMedCrossRefGoogle Scholar
- Wolter, L. C., Hyland, C. A., and Saul, A., 1993, Rhesus D genotyping using polymerase chain reaction, Blood 82: 1682–1683.PubMedGoogle Scholar
- Zachowski, A., and Devaux, P. F., 1990, Transmembrane movements of lipids, Experientia 46: 644–656.PubMedCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 1995