MNSs Blood Groups and Major Glycophorins

Molecular Basis for Allelic Variation
  • Cheng-Han Huang
  • Olga O. Blumenfeld
Part of the Blood Cell Biochemistry book series (BLBI, volume 6)


Glycophorins A and B (GPA and GPB) of the erythrocyte membrane are unique compared with membrane glycoproteins of all other cells in that they carry the antigens of a blood group system, the MNSs blood group system, and therefore are readily identifiable in all human populations. The protein and carbohydrate structures of the glycophorins and their disposition in the membrane were among the first to be studied and be firmly established (Huang et al., 1991a). This was made possible because they are the major sialoglycoproteins of the mature erythrocyte, a relatively simple cell lacking all internal organelles; thus, the surface membrane is relatively easy to obtain and yields pure glycophorins using extraction protocols designed for carbohydrate-rich components. Over the years the interest in these molecules was both as the major antigens of the MNSs blood group system and as classical models of integral membrane glycoproteins. More recently, the structure and organization of genes encoding GPA, GPB, and the third member, GPE, were established, and some understanding obtained of factors involved in regulation of their expression in the erythroid cells (Cartron et al., 1990; Cartron and Rahuel, 1992). The nature of glycophorins as blood group antigens and the knowledge that serological variants of the common antigens occur among various populations (Race and Sanger, 1975) prompted investigations of the nature of polymorphism in this family of membrane glycoproteins. These studies revealed a common pattern of molecular mechanisms for protein diversification, and the glycophorin gene family can now serve as a prototype for human gene rearrangements.


Splice Site Blood Group Gene Conversion Hybrid Gene Donor Splice Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anstee, D. J., Mawby, W. J., and Tanner, M. J. A., 1982a, Structural variation in human erythrocyte sialoglycoproteins, in Membrane and Transport: A Critical Review ( A. Martonosi, ed.), Vol. 2, pp. 427–433, Plenum Press. New York.CrossRefGoogle Scholar
  2. Anstee, D. J., Mawby, W. J., Parsons, S. F., Tanner. M. J. A., and Giles, C. M., 1982b, A novel hybrid sialoglycoprotein in St positive human erythrocytes, J. Immunogenet. 9: 51–55.Google Scholar
  3. Blanchard, D., Dahr, W., Beyreuther, K., Moulds, J., and Cartron, J.-P., 1987, Hybrid glycophorins from human erythrocyte membranes. Isolation and complete structural analysis of the novel sialoglycoproteins from St(a) red cells, Eur. J. Biochem. 167: 361–366.PubMedCrossRefGoogle Scholar
  4. Blumenfeld, O. O., Adamany, A. M., and Puglia, K. V., 1981, Amino acid and carbohydrate structural variants of glycoprotein products (M-N glycoproteins) of the M-N allelic locus. Proc. Natl. Acad. Sci. USA 78: 747–751.PubMedCrossRefGoogle Scholar
  5. Blumenfeld, O. O., Adamany, A. M., Puglia, K. V., and Socha, W. W., 1983, The chimpanzee M blood-group antigen is a variant of the human M-N glycoproteins, Biochem. Genet. 21: 333–348.PubMedCrossRefGoogle Scholar
  6. Blumenfeld, O. O., Smith, A. J., and Moulds, J. J., 1987, Membrane glycophorins of Dantu blood group erythrocytes, J. Biol. Chem. 262: 11864–11870.PubMedGoogle Scholar
  7. Carlsson, S. R., Sasaki, H., and Fukuda, M., 1986, Structural variations of 0-linked oligosaccharides present in leukosialin isolated from erythroid, myeloid, and T- lymphoid cell lines, J. Biol. Chem. 261: 12787–12795.PubMedGoogle Scholar
  8. Cartron, J.-P., and Rahuel, C., 1992, Human erythrocyte glycophorins: Protein and gene structure analyses, Transfus. Med. Rev. 6: 63–92.PubMedCrossRefGoogle Scholar
  9. Cartron, J.-P., Prou, O., Luilic, M., and Soulier, J. P., 1983, Susceptibility to invasion by Plasmodium falciparum of some human erythrocytes carrying rare blood group antigens, Br. J. Haematol. 55: 639–647.PubMedCrossRefGoogle Scholar
  10. Cartron, J.-P., Colin, Y., Kudo, S., and Fukuda, M., 1990, Molecular genetics of human erythrocyte sialoglycoproteins glycophorins A, B. C. and D. in: Blood Cell Biochemistry ( J. R. Hans, ed.), pp. 299–335, Plenum Press, New York.Google Scholar
  11. Chandanyingyong, D., and Peirachandra, S., 1975, Studies on the Miltenberger complex frequency in Thailand and family studies, Vox Sang. 28: 152–155.PubMedCrossRefGoogle Scholar
  12. Chasis, J. A., and Mohandas, N., 1992, Red blood cell glycophorins, Blood 80: 1869–1879.PubMedGoogle Scholar
  13. Cook, P. J. L., Noades, J. E., Lomas, C. G., Buckton, K. E., and Robson, E. B., 1980, Exclusion mapping illustrated by the MNSs blood group, Ann. Hum. Genet. 44: 61–72.PubMedCrossRefGoogle Scholar
  14. Dahr, W., 1992, Miltenberger subsystem of the MNSs blood group system, Vox Sang. 62: 129–135.PubMedCrossRefGoogle Scholar
  15. Dahr, W., Beyreuther, K., Steinbach, H., Gielen, W., and Kruger, J., 1980, Structure of the Ss blood group antigens, II, Hoppe-Seyler’s Z. Physiol. Chem. 361: 895–906.PubMedCrossRefGoogle Scholar
  16. Dahr, W., Kordowicz, M., Judd, W. J., Moulds, J., Beyreuther, K., and Kruger, J., 1984a, Structural analysis of the Ss sialoglycoprotein specific for Henshaw blood group from human erythrocyte membranes, Eur. J. Biochem. 141: 51–55.PubMedCrossRefGoogle Scholar
  17. Dahr, W., Newman, R. A., Contreras, M., Kordowicz, M., Teesdale, P., Beyreuther, K., and Kruger, J., 1984b, Structures of Miltenberger class I and II specific major human erythrocyte membrane sialoglycoproteins, Eur. J. Biochem. 138: 259–265.PubMedCrossRefGoogle Scholar
  18. Dahr, W., Moulds, J., Unger, P., Blanchard, D., and Cartron, J.-P., 1986, Serological and biochemical investigations on the N.E. variety of the Dantu red cell phenotype, in: Advances in Forensic Haemogenetics 1 ( B. Brinkmann and K. Henningsen, eds.), pp. 3–7, Springer-Verlag. Berlin.Google Scholar
  19. Dahr, W., Beyreuther, K., Moulds, J., and Unger, P., 1987a, Hybrid glycophorins from human erythrocyte membranes. I. Isolation and complete structural analysis of the hybrid sialoglycoprotein from Dantu-positive red cells of the N. E. variety, Eur. J. Biochem. 166: 31–36.CrossRefGoogle Scholar
  20. Dahr, W., Beyreuther, K., and Moulds, J. J., 1987b, Structural analysis of the major human erythrocyte membrane sialoglycoprotein from Miltenberger class VII cells, Eur. J. Biochem. 166: 27–30.PubMedCrossRefGoogle Scholar
  21. Dahr, W., Moulds, J., Unger, P., and Kordowicz, M., 1987e. The Dantu erythrocyte phenotype of the NE variety, Blur 55: 19–31.CrossRefGoogle Scholar
  22. Dahr, W., Vengelen-Tyler, V., Dybkjaer, E., and Beyreuther, K., 1989, Structural analysis of glyco- phorin A from Miltenberger class VIII erythrocytes, Biol. Chem. Hoppe-Seyler 370: 855–859.PubMedCrossRefGoogle Scholar
  23. Dahr, W., Blanchard, D., Chevalier, C., Cartron, J.-P., Beyreuther, K., and Fournet, B., 1990, The Mz variety of the St(a) phenotype—a variant of glycophorin A exhibiting a deletion, Biol. Chem. Hoppe-Seyler 371: 403–410.PubMedCrossRefGoogle Scholar
  24. Daniels, G. L., Green, C. A., Okubo, Y., Seno, T., Yamaguchi, H., Ota, S., Taguchi, T., and To-monad, Y., 1991, SAT, a `new’ low frequency blood group antigen, which may be associated with two different MNS variants, Transfus. Med. 1: 39–45.PubMedCrossRefGoogle Scholar
  25. Daniels, G. L., Green, C. A., Poole, J., Jernee, D., Smart, E., Wilcox, D., and Young, S., 1993, ERIK, a low frequency red cell antigen of the MNS blood group system associated with St’, Transfus. Med. 3: 129–135.PubMedCrossRefGoogle Scholar
  26. Dover, G. A., 1989, Victims or perpetrators of DNA turnover? Nature 342: 347–348.PubMedCrossRefGoogle Scholar
  27. Ekblom, M., Gahmberg, C. G., and Andersson, L. C., 1985, Late expression of M and N antigens on glycophorin A during erythroid differentiation, Blood 66: 233–236.PubMedGoogle Scholar
  28. Fukuda, M., 1993, Molecular genetics of the glycophorin A gene cluster, Semin. Hematol. 30: 138–151.PubMedGoogle Scholar
  29. Furthmayr, H., Metaxas, M. N., and Metaxas-Buhler, M., 1981, Ms and M: Mutations within the amino-terminal region of glycophorin A, Proc. Natl. Acad. Sci. USA 78: 631–635.PubMedCrossRefGoogle Scholar
  30. Gardner, B., Parsons, S. F., Merry, A. H., and Anstee, D. J., 1989, Epitopes on sialoglycoprotein a: Evidence for heterogeneity in the molecule, Immunology 68: 283–289.PubMedGoogle Scholar
  31. Giles, C. M., 1982, Serological activity of low frequency antigens of the MNSs system and reappraisal of the Miltenberger complex, Vox Sang. 42: 256–261.PubMedCrossRefGoogle Scholar
  32. Hadley, T. J., Klotz, F. W., and Miller, L. H. 1986, Invasion of erythrocytes by malaria parasites: A cellular and molecular overview, Annu. Rev. Microbiol. 40: 451–477.PubMedCrossRefGoogle Scholar
  33. Hill, A. V. S., Allsopp, C. E. M., Kwiatkowski, D., Anstey, N. M., Twumasi, P., Rowe, P. A., Bennett, S., Brewster, D., McMichael, A. J., and Greenwood, B. M., 1991, Common West African HLA antigens are associated with protection from severe malaria, Nature 352: 595–600.PubMedCrossRefGoogle Scholar
  34. Howard, J. C., 1991, Disease and evolution, Nature 352: 565–567.PubMedCrossRefGoogle Scholar
  35. Huang, C.-H., and Blumenfeld, O. O., 1988. Characterization of a genomic hybrid specifying the human erythrocyte antigen Dantu: Dantu gene is duplicated and linked to a S glycophorin gene deletion, Proc. Natl. Acad. Sci. USA 85: 9640–9644.PubMedCrossRefGoogle Scholar
  36. Huang, C.-H., and Blumenfeld, O. O., 1991a, Identification of recombination events resulting in three hybrid genes encoding human MiV, MiV(J.L.), and St’ glycophorins, Blood 77: 1813–1820.PubMedGoogle Scholar
  37. Huang, C.-H.. and Blumenfeld, O. O., 1991b. Molecular genetics of human erythrocyte MiIII and MiVI glycophorins, J. Biol. Chem. 266: 7248–7255.PubMedGoogle Scholar
  38. Huang, C.-H., and Blumenfeld, O. O., 1991c. Multiple origins of the human glycophorin St’ gene. J. Biol. Chem. 266: 23306–23314.PubMedGoogle Scholar
  39. Huang, C.-H., and Blumenfeld, O. O., 1993, Allelic polymorphism of MNSs glycophorins identified by restriction endonuclease analyses, in preparation.Google Scholar
  40. Huang, C.-H., Johe, K., Moulds, J. J., Siebert, P. D., Fukuda, M., and Blumenfeld, O. O., 1987, S Glycophorin (glycophorin B) gene deletion in two individuals homozygous for the S—s—U— blood group phenotype, Blood 70: 1830–1835.PubMedGoogle Scholar
  41. Huang, C.-H., Puglia, K. V., Bigbee, W. L., Guizzo, M. L., Hoffman, M., and Blumenfeld, O. O., 1988, A family study of multiple mutations of alpha and delta glycophorins (glycophorins A and B), Hum. Genet. 81: 26–30.PubMedCrossRefGoogle Scholar
  42. Huang, C.-H., Lu, W.-M., Boots, M. E., and Blumenfeld, O. O., 1989a, Two types of S glycophorin gene alterations in S—s—U— individuals. Transfusion 29: 35S.Google Scholar
  43. Huang, C.-H., Guizzo, M. L., Kikuchi, M., and Blumenfeld, O. O., 1989b, Molecular genetic analysis of a hybrid gene encoding St’ glycophorin of the human erythrocyte membrane, Blood 74: 836–843.PubMedGoogle Scholar
  44. Huang, C.-H., Johe, K. K., Seifter, S., and Blumenfeld, O. O., 1991a, Biochemistry and molecular biology of MNSs blood group antigens. Bailliere’s Clin. Haematol. 4: 821–848.PubMedCrossRefGoogle Scholar
  45. Huang, C.-H., Guizzo, M. L., McCreary, J., Leigh, E. M., and Blumenfeld, O. O., 1991b, Typing of MNSs blood group specific sequences in the human genome and characterization of a restriction fragment tightly linked to S—s— alleles. Blood 77: 381–386.PubMedGoogle Scholar
  46. Huang, C.-H., Kikuchi, M., McCreary, J., and Blumenfeld, O. O., 1992a, Gene conversion confined to a direct repeat of the acceptor splice site generates allelic diversity at human glycophorin (GYP) locus, J. Biol. Chem. 267: 3336–3342.PubMedGoogle Scholar
  47. Huang, C.-H., Skov, F., Daniels, G., Tippett, P., and Blumenfeld, O. O., 19926. Molecular analysis of human glycophorin MiIX gene shows a silent segment transfer and untemplated mutation resulting from gene conversion via sequence repeats, Blood 80: 2379–2387.Google Scholar
  48. Huang, C.-H., Spruell, P., Moulds, J. J., and Blumenfeld, O. O., 1992c, Molecular basis for the human erythrocyte glycophorin specifying the Miltenberger class I (Mil) phenotype. Blood 80: 257–263.PubMedGoogle Scholar
  49. Huang, C.-H., Lomas, C., Moulds, C., and Blumenfeld, O. O., 1992d. Human glycophorin HenshawStones (HGpHe-St’) is a complex genetic variant resulting from two independent homologous recombination events. Blood 80: 274a (Abstract).Google Scholar
  50. Huang, C.-H., Socha, W. W., and Blumenfeld, O. O., 1992e. The messenger RNA structures of glycophorin homologues in common chimpanzee and their evolutionary relationship with human glycophorins A and B. Blood 80: 274a (Abstract).Google Scholar
  51. Huang, C.-H., Reid, M., Daniels, G., and Blumenfeld, O. O., 1992f, Molecular analysis of human glycophorin ERIK gene whose transcript processing results in two low frequency antigens ERIK and St’, Transfusion 32: 42S.CrossRefGoogle Scholar
  52. Huang, C.-H., Reid, M. E., and Blumenfeld, O. O., 1993a, Exon skipping caused by DNA recombination that introduces a defective donor splice site into the human glycophorin A gene. J. Biol. Chem. 268: 4945–4952.PubMedGoogle Scholar
  53. Huang, C.-H., Reid, M. E., Daniels, G., and Blumenfeld, O. O., 1993b, Alteration of splice site selection by an exon mutation in the human glycophorin A gene. J. Biol. Chem. 268: 25902–25908.PubMedGoogle Scholar
  54. Huang, C.-H., Blumenfeld, O. O., Daniels, G. L., and Okubo, Y., 1993c, An A-B hybrid glycophorin gene encodes the low frequency blood group antigen SAT. Transfusion 33: 48S (Abstract).Google Scholar
  55. Huang, C.-H., Blumenfeld, O. O., and. Reid, M., 1993d, The S—s—U— and S—s—U+ blood group phenotypes. Molecular heterogeneity and relationship to Henshaw allele, Transfusion 33: 46S (Abstract).Google Scholar
  56. Huang, C.-H., Reid, M. E., and Blumenfeld, O. O., 1994a, Remodeling of the transmembrane segment in human glycophorin by aberrant RNA splicing. J. Biol. Chem. 269: 10804–10812.PubMedGoogle Scholar
  57. Huang, C.-H., Lomas, C., Daniels, G., and Blumenfeld, O. O., 1994b, Glycophorin He(St’) of the human red blood cell membrane is encoded by a complex hybrid gene resulting from two recombinational events, Blood 83: 3369–3376.PubMedGoogle Scholar
  58. Johe, K. K., Smith, A. J., Vengelen-Tyler, V., and Blumenfeld, O. O., 1989, Amino acid sequence of an a-6-glycophorin hybrid, J. Biol. Chem. 264: 17486–17493.PubMedGoogle Scholar
  59. Johe, K. K., Vengelen-Tyler, V., Leger, R., and Blumenfeld, O. O., 1991a. Synthetic peptides homologous to human glycophorins of the Miltenberger complex of variants of MNSs blood group system specify the epitopes for Hit, S“, Hop, and Mur antisera, Blood 78: 2456–2461.PubMedGoogle Scholar
  60. Johe, K. K., Smith, A. J., and Blumenfeld, O. O., 199 lb, Amino acid sequence of MaIII: Demonstration of S—a and a—b junction regions and expression of b pseudoexon by direct protein sequencing, J. Biol. Chem. 266:7256 Appendix.Google Scholar
  61. Kappes, D., and Strominger, J. L., 1988. Human class II major histocompatibility complex genes and proteins, Annu. Rev. Biochem. 57: 991–1028.PubMedCrossRefGoogle Scholar
  62. Kudo, S., and Fukuda, M., 1989, Structural organization of glycophorin A and B genes: Glycophorin B gene evolved by homologous recombination at Alu repeat sequences, Proc. Natl. Acad. Sci. USA 86: 4619–4623.PubMedCrossRefGoogle Scholar
  63. Kudo, S., and Fukuda, M., 1990, Identification of a novel human glycophorin, glycophorin E. by isolation of genomic clones and complementary DNA clones utilizing polymerase chain reaction, J. Biol. Chem. 265: 1102–1110.Google Scholar
  64. Kudo, S., Chagnovich, D., Rearden, A., Mattei, M.-G., and Fukuda, M., 1990, Molecular analysis of a hybrid gene encoding human glycophorin variant Miltenberger V-like molecule, J. Biol. Chem. 265: 13825–13829.PubMedGoogle Scholar
  65. Kuivaniemi, H., Tromp, G., and Prockop, D. J., 1991, Mutations in collagen genes: Causes of rare and some common diseases in humans, FASEB J. 5: 2052–2060.PubMedGoogle Scholar
  66. Landy, A., and Ross, W., 1977, Viral integration and excision: Structure of the lambda att sites, Science 197: 1147–1160.PubMedCrossRefGoogle Scholar
  67. Langlois, R. G., Bigbee, W. L., and Jensen, R. H., 1986, Measurements of the frequency of human erythrocytes with gene expression loss phenotypes at the glycophorin A locus. Hum. Genet. 74: 353–362.PubMedCrossRefGoogle Scholar
  68. Langlois, R. G., Bigbee, W. L., Kyoizumi, S., Nakamura, N., Bean, M. A., Akiyama, M., and Jensen, R. H., 1987. Evidence for increased somatic cell mutations at the glycophorin A locus in atomic bomb survivors, Science 236: 445–448.PubMedCrossRefGoogle Scholar
  69. Lehmann, H., 1986. Human hemoglobin variants, in Hemoglobin: Molecular, Genetic and Clinical Aspects ( H. F. Bunn and B. G. Forget, eds.), Saunders, Philadelphia.Google Scholar
  70. Lewis, M., Antsee, D. J., Bird, G. W. G., Brodheim, E., Cartron, J.-P., Contreras, M., Crookston, M. C., Dahr, W., Daniels, G. L., Engelfriet, C. P., Giles, C. M., Issitt, P. D., Jorgensen, J., Komstad, L., Lubenko, A., Marsh, W. L., McCreary, J., Moore, B. P. L., Morel, P., Moulds, J. J., Nevanlinna, H., Nordhagen, R., Okubo, Y., Rosenfield, R. E., Rouser, Ph., Rubinstein, P., Salmon, Ch., Seidl, S., Sistonen, P., Tippett, P., Walker, R. H., Woodfield, G., and Young, S., 1990, Blood group terminology, Vox Sang. 58: 152–169.CrossRefGoogle Scholar
  71. Lomas, C., Daniels, G. L., Green, C. A., Kelly, L., and Moulds, M., 1992, The first He+ St(a+) donor; immunoblotting determined the presence of He and St’ on one novel glycophorin molecule, Transfusion 32: 54S.CrossRefGoogle Scholar
  72. Lowe, R. F., and Moores, P. P., 1972, S—s—U— red cell factor in Africans of Rhodesia, Malawi, Mozambique and Natal, Hum. Hered. 22: 344–350.PubMedCrossRefGoogle Scholar
  73. Lu, Y.-Q., Nichols, M. E., Bigbee, W. L., Nagel, R. L., and Blumenfeld, O. O., 1987a, Structural polymorphism of glycophorins demonstrated by immunoblotting techniques, Blood 69: 618–624.PubMedGoogle Scholar
  74. Lu, Y.-Q., Liu, J.-F., Socha, W. W., Nagel, R. L., and Blumenfeld, O. O., 1987b, Polymorphism of glycophorins in nonhuman primate erythrocytes, Biochem. Genet. 25: 477–491.PubMedCrossRefGoogle Scholar
  75. Lu, W.-M., Huang, C.-H., Guizzo, M. L., McCreary, J., and Blumenfeld, O. O., 1989, Occurrence of MNSs sequences in human genome and identification of a genetic marker tightly linked to Su alleles, Transfusion 29: 35S.Google Scholar
  76. Lu, W.-M., Huang. C.-H., Socha, W. W., and Blumenfeld, O. O., 1990, Polymorphisms and gross structure of glycophorin genes in common chimpanzees. Biochem. Genet. 28: 399–413.Google Scholar
  77. Lutz, P., and Dzik, W. H., 1992, Molecular biology of red cell blood group genes, Transfusion 32: 467–483.PubMedCrossRefGoogle Scholar
  78. Madden, H. J., Cleghorn, T. E., Allen, F. H. Jr., Rosenfield, R. E., and Mackeprang, M., 1964, A note on the relatively high frequency of St’ on the red blood cells of Orientals, and report of a third example of anti-St’, Vox Sang. 9: 502–504.PubMedCrossRefGoogle Scholar
  79. Maeda, N., McEvoy, S. M., Harris, H. F., Huisman, T. H. J., and Smithies, O., 1986, Polymorphisms in the human haptoglobin gene cluster: Chromosomes with multiple haptoglobin-related (Hpr) genes. Proc. Natl. Acad. Sci. USA 83: 7395–7399.PubMedCrossRefGoogle Scholar
  80. Maizels, N., 1989, Might gene conversion be the mechanism of somatic hypermutation of mammalian immunoglobulin genes? Trends Genet. 5: 4–8.PubMedCrossRefGoogle Scholar
  81. Mawby, W. J., Anstee, D. J., and Tanner, M. J. A., 1981, Immunochemical evidence for hybrid sialoglycoproteins of human erythrocytes, Nature 291: 161–162.PubMedCrossRefGoogle Scholar
  82. Merry, A. H., Hodson, C., Thomson, E. E., Mallinson, G., and Anstee, D. J., 1986, The use of monoclonal antibodies to quantify the levels of sialoglycoproteins a and S and variant sialoglycoproteins in human erythrocyte membranes, Biochem. J. 233: 93–98.PubMedGoogle Scholar
  83. Metaxas, M. N., Metaxas-Buhler, M., and Ikin, E. W., 1968, Complexities of the MN locus, Vox Sang. 15: 102–117.PubMedCrossRefGoogle Scholar
  84. Miyamoto, M. M., Slightom, J., and Goodman, M., 1987, Phylogenetic relations of humans and African apes from DNA sequences in the Pn-globin region, Science 238: 369–373.PubMedCrossRefGoogle Scholar
  85. Onda, M., Kudo, S., Rearden, A., Mattei, M.-G., and Fukuda, M., 1993, Identification of a precursor genomic segment that provided a sequence unique to glycophorin B and E genes, Proc. Natl. Acad. Sci. USA 90: 7220–7224.CrossRefGoogle Scholar
  86. Palek, J., and Sahr, K. E., 1992, Mutations of the red blood cell membrane proteins: From clinical evaluation to detection of the underlying genetic defect, Blood 80: 308–330.PubMedGoogle Scholar
  87. Pasvol, G., Wainscoat, J. S., and Weatherall, D. J., 1982, Erythrocytes deficient in glycophorin resist invasion by malarial parasite Plasmodium falciparum, Nature 287: 64–66.CrossRefGoogle Scholar
  88. Race, R. R., and Sanger, R., 1975, The MNSs blood groups, Blood Groups in Man, 6th ed., pp. 92–138, Blackwell, Oxford.Google Scholar
  89. Rading, C. M., 1978, The mechanism of conversion of deletions and insertions, Cold Spring Harbor Svmp. Quant. Biol. 43: 1315–1316.CrossRefGoogle Scholar
  90. Rahuel, C., London, J., Vignal, A., Cherif-zahar, B., Colin, Y., Siebert, P., Fukuda, M., and Cartron, J.-P., 1988a, Alteration of the genes for glycophorin A and B in glycophorin-A-deficient individuals, Eur. J. Biochem. 177: 605–614.PubMedCrossRefGoogle Scholar
  91. Rahuel, C., London, J., d’Auriol, L., Mattei, M.-G., Tournamille, C., Skrzynia, C., Lebouc, Y., Galibert, F., and Cartron, J.-P., 1988b, Characterization of cDNA clones for human glycophorin A, Eur. J. Biochem. 172: 147–153.PubMedCrossRefGoogle Scholar
  92. Rahuel, C., London, J., Vignal, A., Ballas, S. K., and Cartron, J.-P., 1991, Erythrocyte glycophorin B deficiency may occur by two distinct gene alterations, Am. J. Hematol. 37: 57–58.PubMedCrossRefGoogle Scholar
  93. Rahuel, C., Vinit, M.-A., Lemarchandel, V., Cartron, J.-P., and Romeo, P.-H., 1992, Erythroid-specific activity of the glycophorin B promoter requires GATA-1 mediated displacement of a repressor, EMBO J. 11: 4095–4102.PubMedGoogle Scholar
  94. Rearden, A., 1986, Evolution of glycophorin A in the hominoid primates studied with monoclonal antibodies, and description of a sialoglycoprotein analogous to human glycophorin B in chimpanzee, J. Immunol. 136: 2504–2509.PubMedGoogle Scholar
  95. Rearden, A., Phan, H., Dubnicoff, T., Kudo, S., and Fukuda, M., 1990a, Identification of the crossing-over point of a hybrid gene encoding human glycophorin variant St. J. Biol. Chem. 265: 9259–9263.PubMedGoogle Scholar
  96. Rearden, A., Phan, H., and Fukuda, M., I990b, Multiple restriction fragment length polymorphisms associated with the Vc determinant of the MN blood group-related chimpanzee V-A-B-D systems, Biochem. Genet. 28: 223–231.Google Scholar
  97. Rearden, A., Phan, H., Kudo, S., and Fukuda, M., 1990c, Evolution of the glycophorin gene family in the hominoid primates, Biochem. Genet. 28: 209–222.PubMedCrossRefGoogle Scholar
  98. Rearden, A., Magnet, A., Kudo, S., and Fukuda, M., 1993, Glycophorin B and glycophorin E genes arose from glycophorin A ancestral gene via two duplication during primate evolution, J. Biol. Chem. 268: 2260–2267.Google Scholar
  99. Skov, F., Green, C., Daniels, G., Khalid, G., and Tippett, P., 1991, Miltenberger class IX of the MNS blood group system, Vox Sang. 61: 130–136.PubMedCrossRefGoogle Scholar
  100. Smith, C. W. J., Patton, J. G., and Nadal-Ginard, B., 1989, Alternative splicing in the control of gene expression, Annu. Rev. Genet. 23: 527–577.PubMedCrossRefGoogle Scholar
  101. Smith, G. P., 1976, Evolution of repeated DNA sequences by unequal crossover, Science 191: 528–535.PubMedCrossRefGoogle Scholar
  102. Socha, W. W., and Moor-Jankowski, J., 1979, Blood groups of anthropoid apes and their relationship to human blood groups. J. Hum. Evol. 8: 453–465.CrossRefGoogle Scholar
  103. Szostak, J. W., Orr-Weaver, T. L., and Rothstein, R. J., 1983, The double-strand-break repair model for recombination, Cell 33: 25–35.PubMedCrossRefGoogle Scholar
  104. Tanner, M. J. A., Anstee, D. J., and Mawby, W. J., 1980, A new human erythrocyte variant (Ph) containing an abnormal membrane sialoglycoprotein. Biochem. J. 187: 493–500.PubMedGoogle Scholar
  105. Tate, C. G., Tanner, M. J. A., Judson, P. A., and Anstee, D. J., 1989, Studies on human red cell glycophorin A and glycophorin B genes in glycophorin-deficient individuals. Biochem. J. 263: 993–996.PubMedGoogle Scholar
  106. Tippett, P., Reid, M. E., Poole, J., Green, C. A., Daniels, G. L., and Anstee, D. J., 1992, The Miltenberger subsystem: Is it obsolescent? Transfus. Med. Rev. 6: 170–182.PubMedCrossRefGoogle Scholar
  107. Vignal, A., Rahuel, C., El Maliki, B., London, J., Le Van Kim, C., Blanchard, D., Andre, C., d’Auriol, L., Galibert, F., Blajchman, M. A., and Cartron, J.-P., 1989, Molecular analysis of glycophorin A and B gene structure and expression in homozygous Miltenberger class V (Mi. V) human erythrocytes, Eur. J. Biochem. 184: 337–344.PubMedCrossRefGoogle Scholar
  108. Vignal, A., Rahuel, C., London, J., Cherif-Zahar, B., Schaff, S., Hattab, C., Okubo, Y., and Cartron, J.-P., 1990a, A novel gene member of the human glycophorin A and B gene family, Eur. J. Biochem. 191: 619–625.PubMedCrossRefGoogle Scholar
  109. Vignal, A., London, J., Rahuel, C., and Cartron, J.-P., 1990b. Promoter sequence and chromosomal organization of the genes encoding glycophorins A, B, and E, Gene 95: 289–293.PubMedCrossRefGoogle Scholar
  110. Vulliamy, T., Mason, P., and Luzzatto, L., 1992. The molecular basis of glucose-6-phosphate dehydrogenase deficiency, Trends Genet. 8: 138–143.PubMedGoogle Scholar
  111. Wang, L.-F., Lu, Y.-Q., Fu, M.-Z., Nagel, R. L., and Blumenfeld, O. O., 1991, I Chuan Hsueh Pao 18: 1–5.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Cheng-Han Huang
    • 1
  • Olga O. Blumenfeld
    • 2
  1. 1.Lindsley F. Kimball Research InstituteNew York Blood CenterNew YorkUSA
  2. 2.Department of BiochemistryAlbert Einstein College of MedicineBronxUSA

Personalised recommendations