Biochemistry and Biosynthesis of ABH and Lewis Antigens

Characterization of Blood Group-Specific Glycosyltransferases
  • John B. Lowe
Part of the Blood Cell Biochemistry book series (BLBI, volume 6)

Abstract

Serological techniques were used initially to define the human ABO, H, and Lewis blood group determinants. These studies were done in the context of exploring genetic polymorphisms in the expression of such antigens, usually identified in association with antibody-mediated red blood cell destruction occurring after blood transfusion. Following the studies that uncovered these determinants earlier in this century, a substantial amount of experimental effort was expended to determine the precise structural nature of these molecules, and the genetic and molecular basis for their polymorphic properties. We now have a detailed picture of the chemical nature of these blood group determinants, we understand their biosynthetic pathways in substantial detail, and recent work has yielded a satisfyingly consistent set of hypotheses concerning the genes and enzymes that determine their expression. As will be detailed below, and in Chapter 2 of this volume, the molecules of the A, B, H, and Lewis blood group determinants are oligosaccharides, which are constructed by the sequential catalytic action of glycosyltransferase enzymes. Recent studies in this area have been focused on isolating and characterizing such glycosyltransferase genes. As will be apparent below, the genes corresponding to the ABO, H, and Lewis blood group loci have been cloned and characterized. Moreover, recent work suggests that the human Secretor blood group locus has also been isolated. These cloned gene segments represent tools for characterizing the molecular basis for genetic polymorphisms in these loci, and for defining the basis for the tissue-specific expression patterns of these oligosaccharide-type antigens, at the molecular level.

Keywords

Blood Group Blood Group Antigen Glycosyltransferase Gene Human Blood Group Secretor Locus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allard, W. J., and Lienhard, G. E., 1985, Monoclonal antibodies to the glucose transporter from human erythrocytes, J. Biol. Chem. 160: 8668–8675.Google Scholar
  2. Andresen, P. H., 1948, Blood groups with characteristic phenotypical aspects. Acta Pathol. Microbiol. Scand. 24: 616–621.Google Scholar
  3. Andresen, P. H., and Jordal, K., 1949, An incomplete agglutinin related to the L (Lewis) system, Acta Pathol. Microbiol. Scand. 26: 636–642.Google Scholar
  4. Ball, S. P., Tongue, N., Gibaud, A., Le Pendu, J., Mollicone, R., Gerard, G., and Oriol, R., 1991, The human chromosome 19 linkage group FUTI (H), FUT2 (SE), LE, LU. PEPD, C3, APOC2, D19S7. and D19S9, Ann. Hum. Genet. 55 (pt 3): 225–233.PubMedGoogle Scholar
  5. Berg, E. L., Robinson, M. K., Mansson, O., Butcher, E. C., and Magnani, J. L., 1991, A carbohydrate domain common to both sialyl Lea and sialyl Lex is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1, J. Biol. Chem. 266: 14869–14872.PubMedGoogle Scholar
  6. Betteridge, A., and Watkins, W. M., 1986. Acceptor substrate specificities of human a-2-L-fucosyltransferases from different tissues. Biochem. Soc. Trans. 13: 1126–1130.Google Scholar
  7. Bevilacqua, M., Butcher, E., Furie, B., Furie, B., Gallatin, M., Gimbrone, M., Harlan, J., Kishimoto, K., Lasky, L., and McEver, R., 1991. Selectins: A family of adhesion receptors. Cell 67: 233.PubMedGoogle Scholar
  8. Bhatia, H. M., and Sathe, M. S., 1974, Incidence of “Bombay” (Oh) phenotype and weaker variants of A and B antigen in Bombay (India), Vox Sang. 27: 524–528.PubMedGoogle Scholar
  9. Bird, G. W. G., 1959, Haemagglutinins in seeds. Br. Med. Bull. 15: 165–169.PubMedGoogle Scholar
  10. Breimer, M. E., and Samuelsson, B. E., 1986, A specific distribution of glycolipid based blood group A antigens in human kidney related to A, /A2, Lewis and secretor status of single individuals, Transplantation 42: 88–93.PubMedGoogle Scholar
  11. Came, L. R., and Watkins, W. M., 1977, Human blood group B gene-specified alpha-3-galactosyltransferase: Purification of the enzyme in serum by biospecific adsorption onto blood group O erythrocyte membranes, Biochem. Biophvs. Res. Commun. 77: 700–707.Google Scholar
  12. Chester, M. A., Yates, A. D., and Watkins, W. M., 1976. Phenyl-3-o-galactopyranoside as an acceptor substrate for the blood-group H gene associated guanosine diphosphate L-fucose:3-D-galactosyl a-2-Lfucosyltransferase, Eur. J. Biochem. 69: 583–592.Google Scholar
  13. Clausen, H., and Hakomori, S., 1989, ABH and related histo-blood group antigens: Immunochemical differences in carrier isotypes and their distribution, Vox Sang. 46: 1–20.Google Scholar
  14. Clausen, H., Levery, S. B., Nudelman, E., Tsuchiya, S., and Hakomori, S., 1985, Repetitive A epitope (type 3 chain A) defined by blood group A,-specific monoclonal antibody TH-1: Chemical basis of qualitative A, and A2 distinction, Proc. Natl. Acad. Sci. USA 82: 1199–1203.PubMedGoogle Scholar
  15. Clausen, H., Holmes, E., and Hakomori, S., 1986a. Novel blood group H glycolipid antigens exclusively expressed in blood group A and AB erythrocytes (type 3 chain H). II. Differential conversion of different H substrates by A, and A, enzymes. and type 3 chain H expression in relation to secretor status, J. Biol. Chem. 261: 1388–1392.PubMedGoogle Scholar
  16. Clausen, H., Levery, S. B., Nudelman, E., Baldwin, M., and Hakomori, S., 1986b, Further characterization of type 2 and type 3 chain blood group A glycosphingolipids from human erythrocyte membranes, Biochemistry 25: 7075–7079.PubMedGoogle Scholar
  17. Clausen, H., White, T., Takio, K., Titani, K., Stroud, M., Holmes, E., Karkov, J., Thim, L., and Hakomori, S., 1990. Isolation to homogeneity and partial characterization of a histo-blood group A defined Fuca 1→2Gal a 1→3-N-acetylgalactosaminyltransferase from human lung tissue. J. Biol. Chem. 265: 1139–1145.PubMedGoogle Scholar
  18. Couillin, P., Mollicone, R., Grisard, M. C., Gibaud, A., Ravise, N., Feingold, J., and Oriol, R., 1991, Chromosome llq localization of one of the three expected genes for the human alpha-3-fucosyltransferases, by somatic hybridization, Cvtogenet. Cell Genet. 56: 108–112.Google Scholar
  19. D’Agostaro, G., Bendiak, B., and Tropak, M., 1989, Cloning of cDNA encoding the membrane-bound form of bovine 13l.4-galactosyltransferase, Eur. J. Biochem. 183: 211–214.PubMedGoogle Scholar
  20. Dejter-Juszynski, M., Harpaz, N., Flowers, H. M., and Sharon, N., 1978, Blood-group ABH-specific macroglycolipids of human erythrocytes: Isolation in high yield from a crude membrane glycoprotein fraction, Eur. J. Biochem. 83: 363–369.PubMedGoogle Scholar
  21. Drickamer, K., 1988, Two distinct classes of carbohydrate-recognition domains in animal lectins, J. Biol. Chem. 263: 9557–9560.PubMedGoogle Scholar
  22. Dumas, D. P., Ichikawa, Y., Wong, C. H., Lowe, J. B., and Nair, R. P., 1991, Enzymatic synthesis of sialyl Le` and derivatives based on a recombinant fucosyltransferase, Bioorg. Med. Chem. Lett. 1: 425–428.Google Scholar
  23. Dzierzkowa-Borodej, W., Seyfried, H., Nichols, M., Reid, M., and Marsh, W. L., 1979, The recognition of water soluble I blood group substance, Vox Sang. 18: 222–227.Google Scholar
  24. Economidou, J., Hughes-Jones, N. C., and Gardner, B., 1967, Quantitative measurements concerning A and B antigen site. Vox Sang. 12: 321–324.PubMedGoogle Scholar
  25. Ernst, L. K., Rajan, V. P., Larsen, R. D., Ruff, M. M., and Lowe. J. B., 1989, Stable expression of blood group H determinants and GDP-L-fucose: 3-D-galactoside 2-a-L-fucosyltransferase in mouse cells after transfection with human DNA. J. Biol. Chem. 264: 3436–3447.Google Scholar
  26. Feizi, T., 1985. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens, Nature 314: 53–57.PubMedGoogle Scholar
  27. Foxall, C., Watson, S. R., Dowbenko, D., Fennie, C., Lasky, L. A., Kiso, M., Hasegawa, A., Asa, D., Brandley, B. K., 1992, The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis(x) oligosaccharide. J. Cell. Biol. 117: 895–902.Google Scholar
  28. Fukuda, M., and Fukuda, M. N., 1974, Changes in cell surface glycoproteins and carbohydrate structures during the development and differentiation of human erythroid cells, J. Supramol. Struct. 17: 313–324.Google Scholar
  29. Gaensslen, R. E., Bell, S. C., and Lee, H. C., 1987. Distribution of genetic markers in United States populations: I. Blood group and secretor systems, J. Forensic Sci., 32: 1016–1058.PubMedGoogle Scholar
  30. Galali, U., 1991. The natural anti-Gal antibody: Evolution and autoimmunity in man, Immunol. Ser. 55: 355–373.Google Scholar
  31. Gerard, G., Vitrac, D., Le Pendu, J., Muller, A., and Oriol, R., 1982, H-deficient blood groups (Bombay) of Reunion Island, Am. J. Hum. Genet. 34: 937–939.PubMedGoogle Scholar
  32. Goelz, S. E., Hession, C., Goff, D., Griffiths, B., Tizard, R., Newman, B., Chi-Rosso, G., and Lobb, R., 1990. ELFT: A gene that directs the expression of an ELAM-1 ligand, Cell 63: 1349–1356.PubMedGoogle Scholar
  33. Gooi, H. C., Feizi, T., Kapadia, A., Knowles, B. B., Solter, D., and Evans, M. J., 1981. Stage-specific embryonic antigen involves al-’3 fucosylated type 2 blood group chains. Nature 292: 156–158.PubMedGoogle Scholar
  34. Greenwell, P., Yates, A. D., and Watkins, W. M., 1986, UDP-N-acetyl-o-galactosamine as a donor substrate for the glycosyltransferase encoded by the B gene at the human blood group ABO locus, Carbohydr. Res. 149: 149–170.PubMedGoogle Scholar
  35. Hagopian, A., and Eylar, E. H., 1968. Glycoprotein biosynthesis: Studies on the receptor specificity of the polypeptidyl: N-acetylgalactosaminyl transferase from bovine submaxillary glands, Arch. Biochem. Biophys. 128: 422–426.PubMedGoogle Scholar
  36. Hakomori, S., 1981. Blood group ABH and li antigens of human erythrocytes: Chemistry, polymorphism. and their developmental change, Semin. Hematol. 18: 39–62.PubMedGoogle Scholar
  37. Hanfland, P., and Graham, H., 1981, Immunochemistry of the Lewis blood group system: Partial characterization of Le’, Le“ and H type I (Le’) blood group active glycosphingolipids from human plasma, Arch. Biochem. Biophys. 220: 383–395.Google Scholar
  38. Hanfland, P., Kardowicz, M., Peter-Katalinic, J., Pfannschmidt, G., Crawford, R. J., Graham, H. A., and Egge, H., 1986, Immunochemistry of the Lewis blood group system: Isolation and structures of the Lewis c active and related glycosphingolipids from the plasma of blood-group OLe(a—b—) nonsecretors, Arch. Biochem. Biophvs. 246: 655–672.Google Scholar
  39. Imai, Y., Lasky, L. A., and Rosen, S. D., 1993. Sulphation requirement for GIyCAM-1, an endothelial ligand for L-selectin. Nature 361: 555–557.PubMedGoogle Scholar
  40. Jacquinet, J. C., and Sinäy, P., 1976. Synthëse des substances de groups sanguin IV. Synthëse du 2-acetamido-2-deoxy-4-O-12–0-(a-t.-fucopyranosyl)-ß-o-galactopyranosyl]-D-glucopyranose, porteur de la spëcificitë H, Tetrahedron 32: 1693–1697.Google Scholar
  41. Kabat, E. A., 1956, Specific polysaccharides of blood, in Blood Group Substances, pp. 15–34, Academic Press, New York.Google Scholar
  42. Kabat, E. A., 1973, Immunochemical studies on the carbohydrate moiety of water-soluble blood group A, B, H, Le’. and Le“ substances and their precursor I antigens, Adv. Chem. Ser. 117: 334–337.Google Scholar
  43. Kannagi, R., Levery, S. B., and Hakomori, S., 1984, Blood group H antigen with globo-series structure: Isolation and characterization from human blood group O erythrocytes, FEBS Lett. 175: 397–402.PubMedGoogle Scholar
  44. Kelly, R. J., Ernst, L. K., Larsen, R. D., Bryant, J. G., Robinson, J. S., and Lowe, J. B., 1994, Molecular basis for H blood group deficiency in Bombay (O,,) and para-Bombay individuals, Proc. Natl. Acad. Sci. USA 91: 5843–5847.PubMedGoogle Scholar
  45. Kim, Y. S., and Itzkowitz, S., 1988, Carbohydrate antigen expression in the adenoma—carcinoma sequence, Prog. Clin. Biol. Res. 279: 241–250.PubMedGoogle Scholar
  46. Kisailus, E. C., and Kabat, E. A., 1978. Immunochemical studies on blood groups. LXVI. Competitive binding assays of A, and A2 blood group substances with insolubilized anti-A serum and insolubilized A agglutinine from Dolichos biflorus, J. Exp. Med. 147: 830–835.PubMedGoogle Scholar
  47. Kornfeld, R., and Kornfeld, S., 1985. Assembly of asparagine-linked oligosaccharides, Annu. Rev. Biochem. 54: 631–664.PubMedGoogle Scholar
  48. Koscielak, J., Miller-Podruza, H., and Kranze, R., 1976, Isolation and characterisation of (poly-glycosyl) ceramides (megaloglycolipids) with A, H, I blood group activities, Eur. J. Bichem. 71: 918.Google Scholar
  49. Kukowska-Latallo, J. F., Larsen, R. D., Nair, R. P., and Lowe, J. B., 1990, A cloned human cDNA determines expression of a mouse stage-specific embryonic antigen and the Lewis blood group a(1,3/1,4)fucosyltransferase, Genes Dev. 4: 1288–1303.PubMedGoogle Scholar
  50. Kumar, R., Potvin, B., Muller, W. A., and Stanley, P., 1991, Cloning of a human a(1,3)fucosyltransferase gene that encodes ELFT but does not confer ELAM-1 recognition on CHO transfections, J. Biol. Chem. 266: 21777–21783.Google Scholar
  51. Kumazaki, T., and Yoshida, A., 1984, Biochemical evidence that secretor gene, Se, is a structural gene encoding a specific fucosyltransferase. Proc. Natl. Acad. Sci. USA 81: 4193–4198.PubMedGoogle Scholar
  52. Laine, R. A., and Rush, J. S., 1988. Chemistry of human erythrocyte polylactosamine glycopeptides (erythroglycans) as related to ABH blood group antigenic determinants, Adv. Exp. Med. Biol. 228: 331–347.PubMedGoogle Scholar
  53. Landsteiner, K., 1900, Zur Kenntnis der antifermentativen, lytischen und agglutinierenden Wirkungen des Blutserums und der Lymphe, Zentralbi. Bakteriol. 27: 357–362.Google Scholar
  54. Landsteiner, K., 1901. Uber agglutinationserscheinungen normalen menschlichen Blutes, Wien. Klin. Wochenschr. 14: 1132–1134.Google Scholar
  55. Larsen, R. D., Ernst, L. K., Nair, R. P., and Lowe, J. P., 1990, Molecular cloning, sequence, and expression of human GDP-L-fucose: 3-o-galactoside 2-a-L-fucosyltransferase cDNA that can form the H blood group antigen, Proc. Natl. Acad. Sci. USA 87: 6674–6678.PubMedGoogle Scholar
  56. Lasky, L. A., Singer, M. S., Dowbenko, D., Imai, Y., Henzel, W. J., Grimley, C., Fennie, C., Gillett, N., Watson, S. R., and Rosen, S. D., 1992, An endothelial ligand for L-selectin is a novel mucinlike molecule, Cell 69: 927–938.PubMedGoogle Scholar
  57. Le Beau, M. M., Ryan, D. Jr., and Pericak-Vance, M. A., 1989. Report of the committee on the genetic constitution of chromosomes 18 and 19, Human Gene Mapping 10: Tenth International Workshop on Human Gene Mapping, Cytogenet. Cell Genet. 51: 338–357.PubMedGoogle Scholar
  58. Lemieux, R. U., 1978, Human blood groups and carbohydrate chemistry, Chem. Soc. Rev. 7: 23–25.Google Scholar
  59. Lemieux, R. U., and Driguez, H., 1975, The chemical synthesis of 2–0-(a-L- fucopyranosyl)-3–0(a-Dgalactopyranosyl)D-galactose. The terminal structure of the blood-group B antigenic determinant. J. Am. Chem. Soc. 97: 4069–4071.PubMedGoogle Scholar
  60. Le Pendu, J., Cartron, J. P., Lemieux, R. U., and Oriol, R., 1985. The presence of at least two different H-blood-group-related ß-D-Gal a-2-L-fucosyltransferases in human serum and the genetics of blood group H substances, Am. J. Hum. Genet. 37: 749–760.PubMedGoogle Scholar
  61. Le Pendu, J., Lambert, F., Samuelsson, B. E., Breimer, M. E., Seitz, R. C., Urdaniz, M. P., Suesa, N., Ratcliffe, M., Francoise, A., Poschmann, A., Vinas, J., and Oriol, R., 1986. Monoclonal antibodies specific for type 3 and type 4 chain-based blood group determinants: Relationship to the Al and A2 subgroups, Glycoconjugate J. 3: 255–258.Google Scholar
  62. Levine, P., Robinson, E., Celano, M., Briggs, O., and Falkinburg, L., 1955. Gene interaction resulting in suppression of blood group substance B. Blood 10: 1100–1108.PubMedGoogle Scholar
  63. Lopez, M., Liberge, G., Gerbai, A., Brocteur, J., and Salmon, C., 1976. Cis AB blood groups. Immunologic, thermodynamic and quantitative studies of ABH antigens, Biomedicine 24: 265–271.PubMedGoogle Scholar
  64. Lowe, J. B., 1991, Molecular cloning. expression. and uses of mammalian glycosyltransferases, Semin. Cell Biol. 2: 289–307.PubMedGoogle Scholar
  65. Lowe, J. B., Stoolman, L. M., Nair, R. P., Larsen, R. D., Berhend, T. L., and Marks, R. M., 1990, ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA, Cell 63: 475–484.PubMedGoogle Scholar
  66. Lowe, J. B., Kukowska-Latallo, J. F., Nair, R. P., Larsen, R. D., Marks, R. M., Macher, B. A., Kelly, R. J., and Ernst, L. K., 1991, Molecular cloning of a human fucosyltransferase gene that determines expression of the Lewis x and VIM-2 epitopes but not ELAM-1-dependent cell adhesion, J. Biol. Chem. 266: 17467–17477.PubMedGoogle Scholar
  67. Mäkela, O., Ruoslahti, E., and Ehnholm, C., 1969, Subtypes of human ABO blood groups and subtype-specific antibodies, J. Immunol. 10: 763–769.Google Scholar
  68. Marcus, D. M., and Cass, L. E., 1969, Glycosphingolipids with Lewis blood group activity: Uptake by human erythrocytes, Science 164: 553–555.PubMedGoogle Scholar
  69. Marr, A. M. S., Donald, A. S. R., Watkins, W. M., and Morgan, W. T. J., 1967, Molecular and genetic aspects of human blood-group Le’ specificity, Nature 215: 1345–1349.PubMedGoogle Scholar
  70. Matsui, T., Fujimura, Y., Nishida, S., and Titani, K., 1993, Human plasma alpha 2-macroglobulin and von Willebrand factor possess covalently linked ABO(H) blood group antigens in subjects with corresponding ABO phenotype, Blood 82: 663–668.PubMedGoogle Scholar
  71. Milne, R. W., and Dawes, C., 1973, The relative contributions of different salivary glands to the blood group activity of whole saliva in humans. Vox Sang. 25: 298–307.PubMedGoogle Scholar
  72. Mollicone, R., Davies, D. R., Evans, B., Dalix, A. M., and Oriol, R., 1986, Cellular expression and genetic control of ABH antigens in primary sensory neurons of marmoset, baboon and man, J. Neuroimmunol. 10: 255–269.PubMedGoogle Scholar
  73. Mollicone, R., Gibaud, A., Francois, A., Ratcliffe, M., and Oriol, R., 1990. Acceptor specificity and tissue distribution of three human a-3-fucosyltransferases, Eur. J. Biochem. 191: 169–176.PubMedGoogle Scholar
  74. Mollicone, R., Reguigne, I., Fletcher, A., Aziz, A., Rustam, M., Weston, B. W., Kelly, R. J., Lowe, J. B., and Oriol, R., 1994, Molecular basis for plasma a(1,3)fucosyltransferase deficiency in Indonesian pedigrees. J. Biol. Chem. 269: 12662–12671.PubMedGoogle Scholar
  75. Mollison, P. L., 1979, Blood Transfusion in Clinical Medicine, 6th ed., Blackwell, Oxford.Google Scholar
  76. Mollison, P. L., 1987, Blood Transfusion in Clinical Medicine, 8th ed., Blackwell, Oxford.Google Scholar
  77. Mollison, P. L., and Polley, M. J., 1963. Temporary suppression of the Lewis blood-group antibodies to permit incompatible transfusion, Lancet 1: 909.Google Scholar
  78. Moore, S. J., and Green, C., 1987, The identification of Rhesus polypeptide-blood group ABH-active glycoprotein complex in the human red cell membrane, Biochem. J. 244: 735–741.PubMedGoogle Scholar
  79. Moreno, C., Lundblad, A., and Kabat, E. A., 1971, Immunochemical studies on blood groups. LI. A comparative study of the reaction of A, and A2 blood group glycoproteins with human anti-A, J. Exp. Med. 134: 439–443.PubMedGoogle Scholar
  80. Morgan, W. T. J., and Watkins, W. M., 1953, Inactivation of the H-receptor on human erythrocytes by an enzyme obtained from Trichomonas foetus, Br. J. Exp. Pathol. 34: 94–103.PubMedGoogle Scholar
  81. Morgan, W. T. J., and Watkins, W. M., 1956, The product of the human blood group A and B genes in individuals belonging to group AB, Nature 177: 21–23.Google Scholar
  82. Morgan, W. T. J., and Watkins, W. M., 1969, Genetic and biochemical aspects of human blood group A-, B-, H-, Lea-and Le’-specificity, Br. Med. Bull. 25: 30–34.PubMedGoogle Scholar
  83. Mourant, A. E., 1946, A ‘new’ human blood group antigen of frequent occurrence. Nature 158: 237238.Google Scholar
  84. Mourant, A. E., Kopèc, A. C., and Domaniewska-Sobczak, K., 1976, The Distribution of the Human Blood Groups and Other Biochemical Polvmorphisms, 2nd ed., Oxford University Press, London.Google Scholar
  85. Mueckler, M., Caruso, C., and Baldwin, S. A., 1985, Sequence and structure of a human glucose transporter, Science 229: 941–945.PubMedGoogle Scholar
  86. Nagai, M., Dave, V., Kaplan, B. E., and Yoshida, A., 1978, Human blood group glycosyltransferases. I. Purification of N-acetylgalactosaminyltransferase, J. Biol. Chem. 253: 377–379.PubMedGoogle Scholar
  87. Natsuka, S., Gersten, K. M., Zenita, K., Kannagi, R., and Lowe, J. B., 1994, Molecular cloning of a cDNA encoding a novel human leukocytea-1,3-fucosyltransferase capable of synthesizing the sialyl Lewis x determinant. J. Biol. Chem. 269: 16789–16794.PubMedGoogle Scholar
  88. Nishihara, S., Nakazato, M., Kudo, T., Kimura, H., Ando, T., and Narimatsu, H., 1993a, Human a-1.3fucosyltransferase (FucT-VI) gene is located at only 13 Kb 3’ to the Lewis type fucosyltransferase (FucT-III) gene on chromosome 19, Biochem. Biophys. Res. Commun. 190: 42–46.PubMedGoogle Scholar
  89. Nishihara, S., Yazawa, S., Iwasaki, H., Nakazato, M., Kudo, T., Ando, T., and Narimatsu, H., 1993b, a(1,3/1,4)fucosyltransferase (FucT-III) gene is inactivated by a single amino acid substitution in Lewis histo-blood type negative individuals, Biochem. Biophvs. Res. Commun. 196: 624–631.Google Scholar
  90. Oriol, R., Danilovs, J., and Hawkins, B. R., 1981, A new genetic model proposing that the Se gene is a structural gene closely linked to the H gene, Am. J. Hum. Genet. 33: 421–431.PubMedGoogle Scholar
  91. Oriol, R., Le Pendu, J., and Mollicone, R., 1986, Genetics of ABO, H, Lewis, X and related antigens. Vox Sang. 51: 161–171.PubMedGoogle Scholar
  92. Palcic, M. M., Venot, A. P., Murray Ratcliffe, R., and Hindsgaul, O., 1989, Enzymic synthesis of oligosaccharides terminating in the tumor-associated sialyl-Lewis-a determinant, Carbohydr. Res. 190: 1–11.PubMedGoogle Scholar
  93. Petz, L. E., 1981, Clinical Practice of Blood Transfusion, Churchill Livingstone, Edinburgh.Google Scholar
  94. Phillips, M. L., Nudelman, E., Gaeta, F. C., Perez, M., Singhal, A. K., Hakomori, S., and Paulson, J. C., 1990. ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science 250: 1130–1132.PubMedGoogle Scholar
  95. Polley, M. J., Phillips, M. L., Wayner, E., Nudelman, E., Singhal, A. K., Hakomori, S.-I., and Paulson, J. C., 1991, CD62 and endothelial cell-leukocyte adhesion molecule 1 (SLAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x. Proc. Nat!. Acad. Sci. USA 88: 6224–6228.PubMedGoogle Scholar
  96. Prakobphol, A., Leffler, H., and Fisher, S. J., 1993, The high-molecular-weight human mucin is the primary salivary carrier of ABH, Le(a), and Le(b) blood group antigens, Crit. Rev. Oral. Biol. Med. 4: 325–333.PubMedGoogle Scholar
  97. Prieels, J. P., Monnom, D., Dolmans, M., Beyer, T. A., and Hill, R. L., 1981, Copurification of the Lewis blood group N-acetylglucosaminide a 1–4 fucosyltransferase and an N-acetylglucosaminide a I-3 fucosyltransferase from human milk, J. Biol. Chem. 256: 10456–10463.PubMedGoogle Scholar
  98. Race, R. R., and Sanger, R., 1975, Blood Groups in Man, 6th ed., Blackwell, Oxford.Google Scholar
  99. Rajan, V. P., Larsen, R. D., Ajmera, S., Ernst, L. K., and Lowe, J. B., 1991, A cloned human DNA restriction fragment determines expression of a GDP-L-fucose:(3-o-galactoside 2-a-L-fucosyltransferase in transfected cells, J. Biol. Chem. 264: 1158–11167.Google Scholar
  100. Rege, V. P., Painter, T. J., Watkins, W. M., and Morgan, W. T. J., 1964, Isolation of a serologically active fucose containing trisaccharide from human blood group Le substrate, Nature 240: 740–742.Google Scholar
  101. Rossie, E. C., Simon, T. L., and Moss, G. S., 1991, Principles of Transfusion Medicine, Williams & Wilkins, Baltimore.Google Scholar
  102. Rouger, P., Poupon, R., Gane, P., Mallissen, B., Darnis, F., and Salmon, C., 1986, Expression of blood group antigens including HLA markers in human adult liver, Tissue Antigens 27: 78–86.PubMedGoogle Scholar
  103. Sadler, J. E., 1984, Biosynthesis of glycoproteins: Formation of 0-linked oligosaccharides, in Biology of Carbohydrates ( V. Ginsburg and P. W. Robbins, eds.), Vol. 2, pp. 200–287, Wiley, New York.Google Scholar
  104. Salmon, C. H., and Cartron, J. P., 1977, ABO phenotypes, in CRC Handbook Series in Clinical Laboratory Science, Section D. Blood Banking ( T. J. Greenwalt and E. A. Steane, eds.), Vol. 1, pp. 71–120, CRC Press, Cleveland.Google Scholar
  105. Sarnesto, A., Kohlin, T., Thurin, J., and Blaszczyk-Thurin, M., 1990, Purification of H gene-encoded 3-galactoside al-2fucosyltransferase from human serum, J. Biol. Chem. 265: 15067–15075.PubMedGoogle Scholar
  106. Sarnesto, A., Kohlin, T., Hindsgaul, O., Thurin, J., and Blaszczyk-Thurin, M., 1992, Purification of the secretor-type beta-galactoside alpha 1–2-fucosyltransferase from human serum, J. Biot. Chem. 267: 2737–2744.Google Scholar
  107. Seyfried, H., Walewska, I., and Verblinska, B., 1964, Unusual inheritance of ABO group in a family with weak B antigens, Vox Sang. 9: 268–277.PubMedGoogle Scholar
  108. Solomon, J., Waggoner, R., and Leyshon, W. C., 1965, A quantitative immunogenetic study of gene suppression invoking A, and H antigens of erythrocyte without affecting secreted blood group substance, The Ahm and Ohm. Blood 25: 470–485.PubMedGoogle Scholar
  109. Solter, D., and Knowles, B. B., 1978, Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1), Proc. Natl. Acad. Sei. USA 75: 5565–5569.Google Scholar
  110. Springer, T. A., 1990, Adhesion receptors of the immune system. Nature 346: 425–434.PubMedGoogle Scholar
  111. Szulman, A. E., 1977, The ABH and Lewis antigens of human tissues during prenatal and postnatal life. in Human Blood Groups ( J. F. Mohn. R. W. Plunkett, R. K. Cunningham. and R. M. Lambert, eds.), pp. 426–436. Karger. Basel.Google Scholar
  112. Takada, A., Ohmori, K., Takahashi, N., Tsuyuoka, K., Yago, A., Zenita, K., Hasegawa, A., and Kannagi, R., 1991, Adhesion of human cancer cells to vascular endothelium mediated by a carbohydrate antigen. sialyl Lewis A, Biochem. Biophvs. Res. Commun. 179: 713–719.Google Scholar
  113. Tanner, M. J. A., Martin, P. G., and High, S., 1988. The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence, Biochem. J. 256: 703–712.PubMedGoogle Scholar
  114. Tetteroo, P. A. T., de Heij, H. T., Van den Eijnden, D. H., Visser, F. J., Schoenmaker, E., and Geurts van Kessel, A. H. M., 1987, A GDP-fucose:[Gal beta 1–4]GIcNAc alpha I-3-fucosyltransferase activity is correlated with the presence of human chromosome II and the expression of the Lex, Ley, and sialyl-Lex antigens in human—mouse cell hybrids. J. Biol. Chem. 262: 15984–15989.PubMedGoogle Scholar
  115. Tyrrel, D., Pames, P., Rao, N., Foxall, C., Abbas, S., Dasgupta, F., Nashed, M., Hasegawa, A., Kiso, M., Asa, D., Kidd, J., and Brandley, B. K., 1991, Structural requirements for the carbohydrate ligand of E-selectin. Proc. Natl. Acad. Sci. USA 88: 10372–10376.Google Scholar
  116. von Decastello, A., and Sturli, A., 1902, Muench. Med. Wochschr. 49: 1090–1095.Google Scholar
  117. Watkins, W. M., 1980, Biochemistry and genetics of the ABO. Lewis. and P blood group systems. Adv. Hum. Genet. 10: 1–136.Google Scholar
  118. Watkins, W. M., and Morgan, W. T. J., 1952, Neutralization of the anti-H agglutinin in eel serum by simple sugars. Nature 169: 825–826.PubMedGoogle Scholar
  119. Watkins, W. M., Greenwell, P., and Yates, A. D., 1981, The genetic and enzymatic regulation of the synthesis of the A and B determinants in the ABO blood group system, lmmunol. Commun. 10: 83–100.Google Scholar
  120. Weinstein, J., Lee, E. U., McEntee, K., Lai, P.-H., and Paulson, J. C., 1987. Primary structure of ß-galactoside a2,6-sialyl-transferase. Conversion of membrane-bound enzyme to soluble forms by cleavage of the NH2-terminal signal anchor, J. Biol. Chem. 262: 17735–17743.PubMedGoogle Scholar
  121. Weston, B. W., Nair, R. P., Larsen, R. D., and Lowe, J. B., 1992a, Isolation of a novel human a(I,3)fucosyltransferase gene and molecular comparison to the human Lewis blood group a(1,3/ I,4)fucosyltransferase gene, J. Biol. Chem. 267: 4152–4160.PubMedGoogle Scholar
  122. Weston, B. W., Smith, P. L., Kelly, R. J., and Lowe, J. B., 1992b, Molecular cloning of a fourth member of a human a(I.3)fucosyltransferase gene family: Multiple homologous sequences that determine expression of the Lewis x, sialyl Lewis x, and difucosyl sialyl Lewis x epitopes, J. Biol. Chem. 267: 24575–24584.PubMedGoogle Scholar
  123. Wolf, R. O., and Taylor, L. L., 1964, The concentration of blood-group substances in the parotid, sublingual and submaxillary salivas, J. Dent. Res. 43: 272–277.PubMedGoogle Scholar
  124. Yamaguchi, H., Okubo, Y., and Hazama, F., 1966, Another Japanese A2B, blood-group family with the propositus having O-group father, Proc. Jpn. Acad. 42: 517–520.Google Scholar
  125. Yamamoto, F.-I., and Hakomori, S.-I., 1990, Sugar-nucleotide donor specificity of histo-blood group A and B transferases is based on amino acid substitutions, J. Biol. Chem. 265: 19257–19262.PubMedGoogle Scholar
  126. Yamamoto, F.-I., Clausen, H., White, T., Marken, J., and Hakomori, S.-I., I990a, Molecular genetic basis of the histo-blood group ABO system, Nature 345: 229–233.Google Scholar
  127. Yamamoto, F.-I., Marken, J., Tsuji, T., White, T., Clausen, H., and Hakomori, S.-I., 1990b, Cloning and characterization of DNA complementary to human UDP-GaINAc:Fucal→2Gal al→3GalNAc transferase (histo-blood group A transferase) mRNA. J. Biol. Chem. 264: 1146–1151.Google Scholar
  128. Yamamoto, F., McNeill, P. D., and Hakomori, S., 1992, Human histo-blood group A2 transferase coded by A2 allele, one of the A subtypes, is characterized by a single base deletion in the coding sequence, which results in an additional domain at the carboxyl terminal. Biochem. Biophys. Res. Commun. 187: 366–374.PubMedGoogle Scholar
  129. Yamamoto, F., McNeill, P. D., Yamamoto, M., Hakomori, S., Harris, T., Judd, W. J., and Davenport, R. D., 1993a, Molecular genetic analysis of the ABO blood group system: I. Weak subgroups: A3 and B3 alleles, Vox Sang. 64: 116–119.PubMedGoogle Scholar
  130. Yamamoto, F., McNeill, P. D., Kominato, Y., Yamamoto, M., Hakomori, S., Ishimoto, S., Nishida, S., Shima, M., and Fujimura, Y., 1993b, Molecular genetic analysis of the ABO blood group system: 2. cis-AB alleles. Vox Sang. 64: 120–123.PubMedGoogle Scholar
  131. Yamamoto, F., McNeill, P. D., Yamamoto, M., Hakomori, S., and Harris, T., 1993c, Molecular genetic analysis of the ABO blood group system: 3. A(X) and B(A) alleles, Vox Sang. 64: 171–174.PubMedGoogle Scholar
  132. Yoshida, A., Yamaguchi, H., and Okubo, Y., 1980a, Genetic mechanism of cis-AB inheritance. I. A case associated with unequal chromosomal crossing over. Am. J. Hum. Genet. 32: 332–338.PubMedGoogle Scholar
  133. Yoshida, A., Yamaguchi, H., and Okubo, Y., 1980b, Genetic mechanism of cis-AB inheritance. II. Cases associated with structural mutation of blood group glycosyltransferases, Am. J. Hum. Genet. 32: 645–650.PubMedGoogle Scholar
  134. Yuen, C. T., Lawson, A. M., Chai, W., Larkin, M., Stoll, M. S., Stuart, A. C., Sullivan, F. X., Ahern, T. J., and Feizi, T., 1992. Novel sulfated ligands for the cell adhesion molecule E-selectin revealed by the neoglycolipid technology among 0-linked oligosaccharides on an ovarian cystadenoma glycoprotein, Biochemistry 31: 9126–9131.PubMedGoogle Scholar
  135. Zhou, Q., Moore, K. L., Smith, D. F., Varki, A., McEver, R. P., and Cummings, R. D., 1991. The selectin GMP-140 binds to sialylated, fucosylated lactosaminoglycans on both myeloid and non-myeloid cells, J. Cell Biol. 115: 557–564.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • John B. Lowe
    • 1
  1. 1.Howard Hughes Medical Institute, Department of PathologyUniversity of Michigan, Medical SchoolAnn ArborUSA

Personalised recommendations