Overview of Other Blood Group Systems

  • Patricia Tippett
Part of the Blood Cell Biochemistry book series (BLBI, volume 6)


The biochemical nature and sometimes the molecular genetic basis of antigens of many blood group systems have been defined but there are still several systems for which there is less information. A polymorphic X-borne blood group system (Table I) and six autosomal blood group systems (Table II), not described in other chapters, are briefly summarized in this chapter. The classical terminology is used throughout; the International Society of Blood Transfusion’s (ISBT) recommended numerical alternative for antigens is presented in Table II (Lewis et al., 1990).


Blood Group Blood Group Antigen Blood Group System Null Phenotype Monoclonal Antibody 12E7 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aubrit, F., Gelin, C., Pham, D., Raynal. B., and Bernard, A., 1989, The biochemical characterization of E2, a T cell surface molecule involved in rosettes, J. Immunol. 19: 143l - 1436.Google Scholar
  2. Bailly, P., Hermand, P., Callebaut, I., Sonnebom, H. H., Khamlichi, S., Momon, J. P., and Cartron, J. P., 1994, The LW blood group glycoprotein is homologous to intercellular adhesion molecules (ICAMS), Proc. Natl. Acad. Sci. USA, 91: 5306–5310.PubMedCrossRefGoogle Scholar
  3. Banks, J. A., Parker, N., and Poole, J., 1992, Evidence to show that Dombrock (Do) antigens reside on the Gy“/Hy glycoprotein, Transfus. Med. 2 (Suppl. 1): 68.Google Scholar
  4. Banting, G. S.. Pym, B., and Goodfellow, P. N., 1985, Biochemical analysis of an antigen produced by both human sex chromosomes, EMBO J. 4: 1967–1972.PubMedGoogle Scholar
  5. Banting, G. S., Pym, B., Darling, S. M., and Goodfellow, P. N., 1989, The MIC2 gene product: Epitope mapping and structural prediction analysis define an integral membrane protein, Mol. Immunol. 26: 181–188.PubMedCrossRefGoogle Scholar
  6. Bartels, C. F.. Zelinski, T., and Lockridge, 0., 1993, Mutation at codon 322 in the human acetylcholinesterase gene (ACHE) accounts for YT blood group polymorphism, Am. J. Hum. Genet. 52: 928936.Google Scholar
  7. Bloy. C., Blanchard, D., Hermand, P., Kordowicz, M., Sonneborn, H. H., and Cartron, J.-P., 1989, Properties of the blood group LW glycoprotein and preliminary comparison with Rh proteins, Mol. Immunol. 26: 1013–1019.CrossRefGoogle Scholar
  8. Bloy, C., Hermand, P., Blanchard, D., Cherif-Zahar, B., Goossens, D., and Cartron, J.-P., 1990a, Surface orientation and antigen properties of Rh and LW polypeptides of the human erythrocyte membrane, J. Biol. Chem. 265: 21482–21487.PubMedGoogle Scholar
  9. Bloy, C., Hermand, P., Cherif-Zahar, B., Sonneborn, H. H., and Cartron, J.-P., 1990b, Comparative analysis by two-dimensional iodopeptide mapping of the RhD protein and LW glycoprotein, Blood 75: 2245–2249.PubMedGoogle Scholar
  10. Branch, D. R., Muensch, H. A., Sy Siok Hian, A. L., and Petz, L. D., 1983, Disulfide bonds are a requirement for Kell and Cartwright (Yt’) blood group antigen integrity, Br. J. Haematol. 54: 573–578.Google Scholar
  11. Bruce, L. J., Anstee, D. J., Spring, F. A., and Tanner, M. J. A., 1994, Band 3 Memphis variant II: altered stilbene disulphonate binding and the Diego (Dia) blood group antigen are associated with the human erythrocyte band mutation pro854→leu, J. Biol. Chem. 269: 16155–16158.PubMedGoogle Scholar
  12. Cartron, J.-P., 1987, Recent advances in the biochemistry of blood group Rh antigens, in Monoclonal Antibodies against Human Red Blood Cell and Related Antigens ( P. Rouger and C. Salmon, eds.), pp. 69–97, Libraire Arnette, Paris.Google Scholar
  13. Cook, P. J. L., and Hamerton, J. L., 1979, Report of the committee on the genetic constitution of chromosome 1, Cytogenet. Cell Genet. 25: 9–20.PubMedCrossRefGoogle Scholar
  14. Daniels, G., 1992, Effect of enzymes on and chemical modifications of high-frequency red cell antigens, Immunohematology 8: 53–57.PubMedGoogle Scholar
  15. Darling, S. M., Banting, G. S., Pym, B., Wolfe, J., and Goodfellow, P. N., 1986, Cloning an expressed gene shared by the human sex chromosomes, Proc. Natl. Acad. Sci. USA 83: 135–139.PubMedCrossRefGoogle Scholar
  16. de la Chapelle, A., Tippett, P. A., Wetterstrand, G., and Page, D., 1984, Genetic evidence of X—Y interchange in a human XX male, Nature 307: 170–171.PubMedCrossRefGoogle Scholar
  17. Dunstan, R. A., 1986, Status of major red cell blood group antigens on neutrophils, lymphocytes and monocytes, Br. J. Haematol. 62: 301–309.PubMedCrossRefGoogle Scholar
  18. Eaton, B. R., Morton, J. A., Pickles, M. M., and White, K. E., 1956, A new antibody anti-Yf, characterizing a blood group of high incidence, Br. J. Haematol. 2: 333–341.PubMedCrossRefGoogle Scholar
  19. Ellis, N. A., Tippett, P., Petty, A., Reid, M., Weller, P. A., Ye, T-Z., German, J., Goodfellow, P. N., Thomas, S., and Banting, G., PBDX is the XG blood group gene, Nature Genetics,in press.Google Scholar
  20. Ellis, N. A., Ye, T-Z., Patton, S., German, J., Goodfellow, P. N., and Weller, P., 1994, Cloning of PBDX, an M/C2-related gene that spans the pseudoautosomal boundary on chromosome Xp, Nature Genetics, 6: 394–400.PubMedCrossRefGoogle Scholar
  21. Gelin, C., Aubrit, F., Phalipon, A., Raynal, B., Cole, S., Kaczorek, M., and Bernard, A., 1989, The E2 antigen, a 32 kd glycoprotein involved in T-cell adhesion processes, is the MIC2 gene product, EMBO J. 8: 3253–3259.PubMedGoogle Scholar
  22. Getman, D. K., Eubanks, J. H., Camp, S., Evans, G. A., and Taylor, P., 1992, The human gene encoding acetylcholinesterase is located on the long arm of chromosome 7, Am. J. Hum. Genet. 51: 170–177.PubMedGoogle Scholar
  23. Giles, C. M., 1980, The LW blood group: A review, Immunol. Commun. 9: 225–242.PubMedGoogle Scholar
  24. Giles, C. M., and Metaxas, M. N., 1964, Identification of the predicted blood group antibody anti-Yt“, Nature 202: 1122–1123.PubMedCrossRefGoogle Scholar
  25. Giles, C. M., Metaxas-Buhler, M., Romanski, Y., and Metaxas, M. N., 1967, Studies on the Yt blood group system, Vox Sang. 13: 171–180.PubMedCrossRefGoogle Scholar
  26. Giles, C. M., Darnborough, J., Aspinall, P., and Fletton, M. W., 1970, Identification of the first example of anti-Co’, Br. J. Haematol. 19: 267–269.PubMedCrossRefGoogle Scholar
  27. Goodfellow, P., Banting, G., Sheer, D., Ropers, H. H., Caine, A., Ferguson-Smith, M. A., Povey, S., and Voss, R., 1983, Genetic evidence that a Y-linked gene in man is homologous to a gene on the X chromosome, Nature 302: 346–349.PubMedCrossRefGoogle Scholar
  28. Goodfellow, P., Pym, B., Mohandas, T., and Shapiro, L. J., 1984, The cell surface antigen locus, MIC2X, escapes X-inactivation, J. Hum. Genet. 36: 777–782.Google Scholar
  29. Goodfellow, P. J., Darling, S. M., Thomas, N. S., and Goodfellow, P. N., 1986, A pseudoautosomal gene in man, Science 234: 740–743.PubMedCrossRefGoogle Scholar
  30. Goodfellow, P. J., Pritchard, C., Tippett, P., and Goodfellow, P. N., 1987, Recombination between the X and Y chromosomes: Implications for the relationship between MIC2, XG and YG, Ann. Hum. Genet. 51: 161–167.CrossRefGoogle Scholar
  31. Goodfellow, P. N., and Tippett, P., 1981, A human quantitative polymorphism related to Xg blood groups, Nature 289: 404–405.CrossRefGoogle Scholar
  32. Goodfellow, P. N., Pym, B., Pritchard, C., Ellis, N., Palmer, M., Smith, M., and Goodfellow, P. J., 1988, MIC2: A human pseudoautosomal gene, Philos. Trans. R. Soc. London 322: 145–154.CrossRefGoogle Scholar
  33. Habibi, B., Tippett, P., Lebesnerais, M., and Salmon, C., 1979, Protease inactivation of the red cell antigen Xg’, Vox Sang. 36: 367–368.CrossRefGoogle Scholar
  34. Heisto, H., van der Hart, M., Madsen, G., Moes, M., Noades, J., Pickles, M. M., Race, R. R., Sanger, R., and Swanson, J., 1967, Three examples of a new red cell antibody, anti-Co’, Vox Sang. 12: 1824.CrossRefGoogle Scholar
  35. Herron, R., and Smith, G. A., 1989, Identification and immunochemical characterization of the human erythrocyte membrane glycoproteins that carry the Xg’ antigen, Biochem. J. 262: 369–371.PubMedGoogle Scholar
  36. Hsu, L., and Morrison, M., 1985, A new variant of the anion transport protein in human erythrocytes, Biochemistry 24: 3086–3090.PubMedCrossRefGoogle Scholar
  37. Jarolim, P., Rubin, H. L., Zhai, S., Sahr, K. E., Liu, S.-C., Mueller, T. J., and Palek, J., 1992, Band 3 Memphis: A widespread polymorphism with abnormal electrophoretic mobility of erythrocyte band 3 protein caused by substitution AAG→GAG (Lys→Glu) in codon 56, Blood 80: 1592–1598.PubMedGoogle Scholar
  38. Konigshaus, G. J., and Holland, T. I., 1984, The effect of dithiothreitol on the LW antigen, Transfusion 24: 536–537.PubMedCrossRefGoogle Scholar
  39. Kuriyan, M. A., Oyen, R. E., and Marsh, W. L., 1978, Demonstration of Diego (Di’) and Scianna (Scl) antigens on phagocytic leukocytes of the blood, Transfusion 18: 361–364.PubMedCrossRefGoogle Scholar
  40. Kusnierz-Alejska, G., and Bochenek, S., 1992, Haemolytic disease of the newborn due to anti-Dia and incidence of the Di’ antigen in Poland, Vox Sang. 62: 124–126.PubMedCrossRefGoogle Scholar
  41. Lacey, P. A., Robinson, J., Collins, M. L., Bailey, D. G., Evans, C. C., Moulds, J. J., and Daniels, G. L., 1987, Studies on the blood of a Co(a—b—) proposita and her family, Transfusion 27: 268–271.PubMedCrossRefGoogle Scholar
  42. Latron, F., Blanchard, D., and Cartron, J.-P., 1987, Immunochemical characterization of the human blood cell membrane glycoprotein recognized by the monoclonal antibody 12E7, Biochem. J. 247: 757764.Google Scholar
  43. Layrisse, M., Arends, T., and Dominguez, S. R., 1955, Neuvo grupo sanguineo encontrado en descendientes de Indios, Acta Med. Venez. 3: 132–138.Google Scholar
  44. Leven, C., Bar-Shany, S., Manny, N., Moulds, J. J., and Cohen, T., 1987, The Yt blood groups in Israeli Jews, Arabs, and Druse, Transfusion 27: 471–474.CrossRefGoogle Scholar
  45. Levy, R., Dilley, J., Fox, R. I., and Warnke, R., 1979, A human thymus-leukemia antigen defined by hybridoma monoclonal antibodies, Proc. Natl. Acad. Sci. USA 76: 6552–6556.PubMedCrossRefGoogle Scholar
  46. Lewis, M., Chown. B., and Kaita, H., 1967, On the blood group antigens Bu’ and Sm, Transfusion 7: 92–94.Google Scholar
  47. Lewis, M., Kaita, H., Philipps, S., Giblett, E. R., Anderson, J. E., McAlpine, P. J., and Nickel, B., 1980, The position of the Radin blood group locus in relation to other chromosome 1 loci, Ann. Hum. Genet. 44: 179–184.PubMedCrossRefGoogle Scholar
  48. Lewis, M., Anstee. D. J., Bird, G. W. G., Brodheim, E., Cartron, J.-P., Contreras, M., Crookston, M. C., Dahr, W., Daniels, G. L., Engelfriet, C. P., Giles, C. M., Issitt, P. D., Jorgensen, J., Kornstad, L., Lubenko, A., Marsh, W. L., McCreary. J., Moore, B. P. L., Morel, P., Moulds, J. J., Nevanlinna, H., Nordhagen, R., Okubo, Y., Rosenfield, R. E., Rouger, P., Rubinstein, P., Salmon, C., Seidl, S., Sistonen, P., Tippett, P., Walker, R. H., Woodfield, G., and Young, S., 1990, Blood group terminology 1990, Vox Sang. 58: 152–169.CrossRefGoogle Scholar
  49. Li, Y., Camp, S., Rachinsky, T. L., Getman, D., and Taylor, P., 1991, Gene structure of mammalian acetylcholinesterase, J. Biol. Chem. 266: 23083–23090.Google Scholar
  50. Lomas, C. G., and Tippett, P., 1985, Use of enzymes in distinguishing anti-LW’ and anti-LW’ from anti-D, Med. Lab. Sci. 42: 88–89.PubMedGoogle Scholar
  51. Lyon, M. F., 1972, X-chromosome inactivation and developmental patterns in mammals, Biol. Rev. 47: 1–35.PubMedCrossRefGoogle Scholar
  52. Mallinson, G., Martin, P. G.. Anstee, D. J., Tanner, M. J. A., Merry, A. H., Tills, D., and Sonneborn, H. H., 1986, Identification and partial characterization of the human erythrocyte membrane component(s) that express the antigens of the LW blood-group system, Biochem. J. 234: 649–652.Google Scholar
  53. Mann, J. D., Cahan, A., Gelb, A. G., Fisher, N., Hamper, J., Tippett, P., Sanger, R., and Race, R. R.. 1962, A sex-linked blood group, Lancet 1: 8–10.PubMedCrossRefGoogle Scholar
  54. Mollison, P. L., Engelfriet, C. P. and Contreras, M., 1993, Blood Transfusion in Clinical Medicine, 9th ed., Blackwell, Oxford.Google Scholar
  55. Molthan, L., Crawford, M. N., and Tippett, P., 1973, Enlargement of the Dombrock blood group system: The finding of anti-Do°, Vox Sang. 24: 382–384.CrossRefGoogle Scholar
  56. Moore, St., 1983, Identification of red cell membrane components associated with rhesus blood group antigen expression, in Red Cell Membrane Glycoconjugates and Related Genetic Markers ( J.-P. Cartron, P. Rouger, and C. Salmon, eds.), pp. 97–106, Libraire Amette, Paris.Google Scholar
  57. Mourant, A. E., Kopec, A. C., and Domaniewska-Sobczak, K., 1976, The Distribution of the Human Blood Groups and Other Polymorphisms, Oxford University Press, London.Google Scholar
  58. Mueller, T. J., and Morrison, M., 1977, Detection of a variant of protein 3, the major transmembrane protein of the human erythrocyte, J. Biol. Chem. 252: 6573–6576.Google Scholar
  59. Nason, S. G., Vengelen-Tyler, V., Cohen, N., Best, M., and Quirk, J., 1980, A high incidence antibody (anti-Sc3) in the serum of a Sc:-1,-2 patient, Transfusion 20: 531–535.PubMedCrossRefGoogle Scholar
  60. Oliveira, O. L. P., Thomas, D. B., Lomas, C. G., and Tippett, P., 1984, Restricted expression of LW antigen on subsets of human B and T lymphocytes, J. Immunogenet. 11: 297–303.PubMedCrossRefGoogle Scholar
  61. Pasquali, F., Bernasconi, P., Casalone, R., Fraccaro, M., Bernasconi, C., Lazzarino, M., Morra, E., Alessandrino, E. P., Marchi, M. A., and Sanger, R., 1982, Pathogenetic significance of “Pure” monosomy 7 in myeloproliferative disorders. Analysis of 14 cases, Hum. Genet. 62: 40–51.PubMedCrossRefGoogle Scholar
  62. Petty, A., 1993, Monoclonal antibody-specific immobilisation of erythrocyte antigens (MAIEA): A new technique to selectively determine antigenic sites on red cell membranes, J. Immunol. Methods 161: 91–95.PubMedCrossRefGoogle Scholar
  63. Race, R. R., and Sanger, R., 1975, Blood Groups in Man, 6th ed., Blackwell, Oxford.Google Scholar
  64. Rausen, A. R., Rosenfield, R. E., Alter, A. A., Hakim, S., Graven, S. N., Apollon, C. J., Dallman, P. R., Dalziel, J. C., Konugres, A. A., Frances, B., Gavin, J., and Cleghom, T. E., 1967, A ‘new’ infrequent red cell antigen, Rd (Radin), Transfusion 7: 336–342.PubMedCrossRefGoogle Scholar
  65. Rogers, M. J., Stiles, P. A., and Wright, J., 1974, A new minus—minus phenotype: Three Co(a—b—) individuals in one family, Transfusion 14: 508 (abstract).Google Scholar
  66. Ropers, H. H., and Pericak-Vance, M. A., 1991, Report of the committee on the genetic constitution of chromosome 19, Cytogenet. Cell Genet. 58: 751–784.CrossRefGoogle Scholar
  67. Sandrin, M. S., Vaughan, H. A., Henning, M. M., Zola, H., and McKenzie, I. F. C., 1992, Expression cloning of cDNA clones encoding the human cell surface proteins HuLy-m6 and FMC29, Immunogenetics 35: 283–285.PubMedCrossRefGoogle Scholar
  68. Schlossman, S. F., Bounsell, L., Gilks, W., Harlan, J. M., Kishimoto, T., Morimoto, C., Ritz, J., Shaw, S., Silverstein, R. L., Springer, T. A., Tedder, T. F., and Todd, R. F.. 1994, CD antigens 1993, Blood 83: 879–880.PubMedGoogle Scholar
  69. Shulman, I. A., Nelson, J. M., and Lam, H., 1986, Loss of Ytb antigen activity after treatment of red cells with either dithiothreitol or 2-mercaptoethanol, Transfusion 26: 214.PubMedCrossRefGoogle Scholar
  70. Sistonen, P., 1984, The LW (Landsteiner—Weiner) Blood Group System, Ph.D. thesis, University of Helsinki, Finland.Google Scholar
  71. Sistonen, P., and Tippett, P., 1982, A ‘new’ allele giving further insight into the LW blood group system, Vox Sang. 42: 252–255.PubMedCrossRefGoogle Scholar
  72. Smith, B. L., Preston, G. M., Spring, F. A., Anstee, D. J., and Agre, P., Molecular characterisation of ABH and Colton blood group antigens on human aquaporin-1 (CHIP water channel protein), Clin. Res. 42: 238A.Google Scholar
  73. Sonneborn, H. H., Uthemann, H., Tills, D., Lomas, C. G., Shaw, M. A., and Tippett, P., 1984, Monoclonal anti-LW’, Biotest Bull. 2: 145–148.Google Scholar
  74. Spring, F. A., 1993, Characterisation of blood group-active erythrocyte membrane glycoproteins with human antisera, Transfus. Med. 3: 167–178.CrossRefGoogle Scholar
  75. Spring, F. A., and Reid, M. E., 1991, Evidence that the human blood group antigens Gy’ and Hy are carried on a novel glycosylphosphatidylinositol-linked erythrocyte membrane glycoprotein, Vox Sang. 60: 53–59.PubMedCrossRefGoogle Scholar
  76. Spring, F. A., Herron, R., and Rowe, G., 1990. An erythrocyte glycoprotein of apparent M, 60,000 expresses the Scl and Sc2 antigens, Vox Sang. 58: 122–125.PubMedCrossRefGoogle Scholar
  77. Spring, F. A., Bruce, L. J., Anstee. D. J., and Tanner, M. J. A., 1992a, A red cell band 3 variant with altered stilbene disulphonate binding is associated with the Diego (Di’) blood group antigen, Biochem. J. 288: 713–716.Google Scholar
  78. Spring, F. A., Gardner, B., and Anstee, D. J., I992b, Evidence that the antigens of the Yt blood group system are located on human erythrocytes acetylcholinesterase, Blood 80: 2136–2141.Google Scholar
  79. Swanson, J., Polesky, H. F., Tippett, P., and Sanger, R., 1965, A ‘new’ blood group antigen, Do’, Nature 206: 313.CrossRefGoogle Scholar
  80. Telen, M. J., and Whitsett, C. F., 1992, Erythrocyte acetylcholinesterase bears the Cartwright blood group antigens, Clin. Res. 40: 170A.Google Scholar
  81. Telen, M. J., Rosse, W. F., Parker, C. J., Moulds, M. K., and Moulds, J. J., 1990, Evidence that several high-frequency human blood group antigens reside on phosphatidylinositol-linked erythrocyte membrane proteins, Blood 75: 1404–1407.PubMedGoogle Scholar
  82. Thompson, P. R., Childers, D. M., and Hatcher, D. E., 1967, Anti-Di’: First and second examples, Vox Sang. 13: 314–318.PubMedCrossRefGoogle Scholar
  83. Tippett, P., Shaw, M.-A., Green, C. A., and Daniels, G. L., 1986, The 12E7 red cell quantitative polymorphism: Control by the Y-borne locus, Yg, Ann. Hum. Genet. 50: 339–347.PubMedCrossRefGoogle Scholar
  84. Woodfield, D. G., Giles, C., Poole, J., Oraka, R., and Tolanu, T., 1986, A further null phenotype (Sc-1–2) in Papua New Guinea, Proc. 19th Congr. Int. Soc. Blood Transfus., Sydney, p. 651.Google Scholar
  85. Yannoukakos, D., Vasseur, C., Driancourt, C., Blouquit, Y., Delaunay, J., Wajcman, H., and Bursaux, E., 1991, Human erythrocyte band 3 polymorphism (band 3 Memphis): Characterization of the structural modification (Lys 56 → Glu) by protein chemistry methods, Blood 78: 1117–1120.PubMedGoogle Scholar
  86. Zelinski, T., Kaita, H., Gilson, T., Coghlan, G., Philipps, S., and Lewis, M., 1990, Linkage between the Colton blood group locus and ASSPII on chromosome 7, Genomics 6: 623–625.PubMedCrossRefGoogle Scholar
  87. Zelinski, T., White, L., Coghlan, G., and Philipps, S., 1991, Assignment of the YT blood group locus to chromosome 7q, Genomics 11: 165–167.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Patricia Tippett
    • 1
  1. 1.Medical Research Council Blood Group UnitLondonUK

Personalised recommendations