Red Cell Membrane

Structure and Function
  • Jean Delaunay
Part of the Blood Cell Biochemistry book series (BLBI, volume 6)


Because of its simplicity and ease of access, the red cell is one of the best known cells. It has only one membrane, the plasma membrane. The interest in this membrane extends far beyond its highly specialized features. Current research bears on the structure and function of constituent proteins, lipids, and carbohydrates. The organization and expression of the involved genes are also being actively investigated. In this context, much has been learned regarding the chemical nature and molecular genetics of red cell antigens. Critically, many components of the erythrocyte membrane (including a number of antigens) appear in nonerythroid cells as well. Studies on the erythrocyte membrane, therefore, pave the way to more complex cells. The present chapter is intended to sketch out the general framework of the red cell membrane. Blood group antigens are part of a whole. They interact with components of high significance which are not antigens per se. On the other hand, blood group molecules, as a rule, have other functions than that of epitope carriers.


Erythrocyte Membrane Human Erythrocyte Paroxysmal Nocturnal Hemoglobinuria Hereditary Spherocytosis Human Erythrocyte Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Advani, R., Sorenson, S., Shinar, E., Lande, W., Rachmilewitz, E., and Schrier, S. L., 1992, Characterization and comparison of the red blood cell membrane damage in severe human a-and ßthalassemia. Blood 79: 1058–1063.PubMedGoogle Scholar
  2. Agre, P., Orringer, E. P., and Bennett, V., 1982, Deficient red-cell spectrin in severe, recessively inherited spherocytosis. N. Engl. J. Med. 306: 1155–1161.PubMedCrossRefGoogle Scholar
  3. Agre, P., Casella, J. F., Zinkham, W. H., McMillan, C., and Bennett, V., 1985, Partial deficiency of erythrocyte spectrin in hereditary spherocytosis. Nature 314: 380–383.PubMedCrossRefGoogle Scholar
  4. Agre, P., Asimos. A., Casella, J. F., and McMillan. C., 1986. Inheritance pattern and clinical response to splenectomy as a reflection of erythrocyte spectrin deficiency in hereditary spherocytosis, N. Engl. J. Med. 315: 1579–1583.Google Scholar
  5. Alloisio, N., Morlé, L., Bachir, D., Guetami, D., Colonna, P., and Delaunay, J., 1985a, Red cell membrane sialoglycoprotein ß in homozygous and heterozygous 4.1 (—) hereditary elliptocytosis. Biochim. Biophys. Acta 816: 57–62.PubMedCrossRefGoogle Scholar
  6. Alloisio, N., Morlé, L., Dorléac, E., Gentilhomme, O., Bachir, D., Guetami, D., Colonna, P., Bost, M., Zouaoui, Z., Roda. L., Roussel. D. and Delaunay, J., 1985b. The heterozygous form of 4.1(—) hereditary elliptocytosis (the 4.1(—) trait), Blood 65: 46–51.PubMedGoogle Scholar
  7. Alloisio, N., Morlé, L., Maréchal, J., Roux, A. F., Ducluzeau, M. T., Guetami, D., Pothier, B., Baklouti, F., Ghanem, A., Kastally, R., and Delaunay, J., 1991, Spa: A common spectrin polymorphism at the aIV—aV domain junction. Pertinence to the expression level of hereditary elliptocytosis due to a-spectrin variants. J. Clin. Invest. 87: 2169–2177.PubMedCrossRefGoogle Scholar
  8. Alloisio, N., Dalla Venezia, N., Rana, A., Andrabi, K., Texier, P., Gilsanz, F., Cartron, J. P., Delaunay, J., and Chishti, A. H., 1993, Evidence that red blood protein p55 may participate in the skeleton-membrane linkage that involves protein 4.1 and glycophorin C. Blood 82: 1323–1327.CrossRefGoogle Scholar
  9. Anderson, R. A., and Marchesi, V. T., 1985, Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide, Nature 318: 295–298.PubMedCrossRefGoogle Scholar
  10. Baklouti, F., Tang, T. K., Huang. S. C., and Benz, E. J., Jr., 1992, Structure and utilization of exon/ intron junctions of the protein 4.1 gene that are selectively utilized in erythroid and muscle cells, Blood 80(Suppl. 1):273a (Abstr.).Google Scholar
  11. Baron, M. D., Davison, M. D., Jones. P., and Critchley, D. R., 1987, The sequence of chick a-actinin reveals homologies to spectrin and calmodulin, J. Biol. Chem. 262: 17623–17629.PubMedGoogle Scholar
  12. Bartosz, G., 1990, Erythrocyte membrane changes during aging in vivo, in Blood Cell Biochemistry. Vol. 1 (J. R. Harris. ed.), pp. 45–79, Plenum Press. New York.Google Scholar
  13. Bennett, V., 1989, The spectrin—actin junction of erythrocyte membrane skeletons, Biochim. Biophys. Acta 988: 107–121.PubMedCrossRefGoogle Scholar
  14. Bennett, V., 1992, Ankyrins. Adaptors between diverse plasma membrane proteins and the cytoplasm, J. Biol. Chem. 267: 8703–8706.PubMedGoogle Scholar
  15. Bennett, V., and Lambert, S., 1991. The spectrin skeleton: From red cells to brain, J. Clin. Invest. 87: 1483–1489.PubMedCrossRefGoogle Scholar
  16. Bouhassira, E. E., Schwartz, R. S., Yawata. Y., Ata, K., Kanzaki, A., Qiu, J. J. H., Nagel, R. L., and Rybicki, A. C., 1992, An alanine-to-threonine substitution in protein 4.2 cDNA is associated with a Japanese form of hereditary hemolytic anemia (protein 4.2 °N), Blood 79: 1846–1854.Google Scholar
  17. Bretscher, M. S., 1972, Asymmetrical lipid bilayer structure for biological membranes, Nature 236: 11–12.CrossRefGoogle Scholar
  18. Bütikofer, P., Lin, Z. W., Chiu, D. T. Y., Lubin. B., and Kuypers, F. A., 1990, Transbilayer distribution and mobility of phosphatidylinositol in human red blood cells, J. Biol. Chem. 265: 16035–16038.Google Scholar
  19. Byers, T. J., and Branton, D., 1985, Visualization of the protein associations in the erythrocyte membrane skeleton, Proc. Natl. Acad. Sci. USA 82: 6153–6157.PubMedCrossRefGoogle Scholar
  20. Carafoli, E., 1987, Intracellular calcium homeostasis, Annu. Rev. Biochem. 56: 395–433.PubMedCrossRefGoogle Scholar
  21. Cartron, J. P., and Rahuel, C., 1992, Human erythrocyte glycophorins: protein and gene structure analyses. Transfus. Med. Rev. 6: 63–92.PubMedCrossRefGoogle Scholar
  22. Cartron, J. P., Colin, Y., Kudo, S., and Fukuda, M., 1990, Molecular genetics of human erythrocyte sialoglycoproteins. Glycophorins A, B, C and D, in Blood Cell Biochemistry, Vol. 1 ( J. R. Harris, ed.), pp. 299–335, Plenum Press, New York.Google Scholar
  23. Casey, J. R., and Reithmeier. R. A. F., 1991, Analysis of the oligomeric state of band 3, the anion transport protein of the human erythrocyte membrane, by size exclusion high performance liquid chromatography, J. Biol. Chem. 266: 15726–15737.PubMedGoogle Scholar
  24. Chasis, J., and Mohandas. N., 1992, Red blood cell glycophorins, Blood 80: 1869–1879.PubMedGoogle Scholar
  25. Chishti, A. H., Andrabi, K. I., Rana, A., Keeler. M., Maalouf, G., and Bruns, G., 1992, Human erythroid p55: Homolog of Drosophila tumor suppressor factor is highly conserved X-linked gene product with guanylate kinase activity. Blood 80(Suppl. 1): 149a (Abstr.).Google Scholar
  26. Chow, F. L., Telen, M. J., and Rosse, W. F., 1985. The acetylcholinesterase defect in paroxysmal nocturnal hemoglobinuria: Evidence that the enzyme is absent from the cell membrane, Blood 66: 940–945.PubMedGoogle Scholar
  27. Coetzer, T. L., Lawler, J., Liu. S. C., Prchal, J. T., Gualtieri, R. J., Brain, M. C., Dacie, J. V., and Palek, J., 1988, Partial ankyrin and spectrin deficiency in severe, atypical hereditary spherocytosis, N. Engl. J. Med. 318: 230–234.Google Scholar
  28. Cohen, A. M., Liu, S. C., Lawler, J., Derick, L., and Palek, J., 1988. Identification of the protein 4.1 binding site to phosphatidylserine vesicles, Biochemistry 27: 614–619.PubMedCrossRefGoogle Scholar
  29. Cohen, C. M., Dotimas, E., and Korsgren. C., 1993, Human erythrocyte membrane protein band 4.2 (pallidin), in The Cellular and Molecular Biology of the Red Cell Membrane Proteins in Health and Disease (J. Palek, ed.), Saunders, Philadelphia. 30: 119–137.Google Scholar
  30. Colin, F. C., and Schrier, S. L., 1991, Myosin content and distribution in human neonatal erythrocytes are different from adult erythrocytes, Blood 78: 3052–3055.PubMedGoogle Scholar
  31. Conboy, J., Kan, Y. W., Shohet, S. B., and Mohandas. N., 1986a, Molecular cloning of protein 4.1, a major structural element of the human erythrocyte membrane skeleton, Proc. Natl. Acad. Sci. USA 83: 9512–9516.PubMedCrossRefGoogle Scholar
  32. Conboy, J., Mohandas, N., Tchernia, G., and Kan, Y. W., 1986b, Molecular basis of hereditary elliptocytosis due to protein 4.1 deficiency, N. Engl. J. Med. 315: 680–685.PubMedCrossRefGoogle Scholar
  33. Conboy, J. G., Chan, J., Mohandas, N., and Kan, Y. W., 1988, Multiple protein 4.1 isoforms produced by alternative splicing in human erythroid cells, Proc. Natl. Acad. Sci. USA 85: 9062–9065.PubMedCrossRefGoogle Scholar
  34. Conboy, J., Marchesi, S., Kim, R., Agre, P., Kan, Y. W., and Mohandas, N., 1990, Molecular analysis of insertion/deletion mutations in protein 4.1 in elliptocytosis. II. Determination of molecular genetic origins of rearrangements, J. Clin. Invest. 86: 524–530.PubMedCrossRefGoogle Scholar
  35. Conboy, J. G., Chan, J. Y., Chasis, J. A., Kan, Y. W., and Mohandas, N., 1991, Tissue-and development-specific alternative RNA splicing regulates expression of multiple isoforms of erythroid membrane protein 4.1, J. Biol. Chem. 266: 8273–8280.PubMedGoogle Scholar
  36. Cooper, R. A., 1970, Lipids of human red cell membrane: Natural composition and variability in disease, Semin. Hematol. 7: 296–322.PubMedGoogle Scholar
  37. Costa, F. F., Agre, P., Watkins, P. C., Winkelmann, J. C., Tang, K. T., John, K. M.. Lux, S. E., and Forget, B. G., 1990, Linkage of dominant hereditary spherocytosis to the gene for the erythrocyte membrane-skeleton protein ankyrin, N. Engl. J. Med. 323: 1046–1050.Google Scholar
  38. Dalla Venezia, N., Gilsanz, F., Alloisio, N., Ducluzeau. M. T., Benz, E. J. Jr., and Delaunay, J., 1992, Homozygous 4.l(—) hereditary elliptocytosis associated with a point mutation in the downstream initiation codon of protein 4.1 gene, J. Clin. Invest. 90: 1713–1717.PubMedCrossRefGoogle Scholar
  39. Danilov, Y. N., Fennell, R., Ling. E., and Cohen, C. M., 1990. Selective modulation of band 4.1 binding to erythrocyte membranes by protein kinase C, J. Biol. Chem. 265: 2556–2562.PubMedGoogle Scholar
  40. Davis, L., Lux, S. E., and Bennett, V., 1989, Mapping the ankyrin-binding site of the human erythrocyte anion exchanger, J. Biol. Chem. 264: 9665–9672.PubMedGoogle Scholar
  41. Davis, L. H., Otto, E., and Bennett, V., 1991, Specific 33-residue repeat(s) of erythrocyte ankyrin associate with the anion exchanger. J. Biol. Chem. 266: 11163–11169.PubMedGoogle Scholar
  42. Dekowski, S. A., Rybicki, A., and Drickamer, K., 1983, A tyrosine kinase associated with the red cell membrane phosphorylates band 3, J. Biol. Chem. 258: 2750–2753.PubMedGoogle Scholar
  43. Delaunay, J., 1993, Hereditary hemolytic anemias due to defects of membrane proteins, in Red Cells and Their Disorders ( J. Palek, ed.), Current Opinion in Hematology, Current Science, Philadelphia, 59–65.Google Scholar
  44. Delaunay, J., and Dhermy, D., 1993, Spectrin mutations involving the spectrin heterodimer contact site: Clinical expression and alterations in spectrin function, in Cellular and Molecular Biology of the Red Cell Membrane Proteins in Health and Disease, Vol. 30 ( J. Palek, ed.), pp. 21–33, Saunders, Philadelphia.Google Scholar
  45. Delaunay, J., Alloisio, N., Morlé, L., and Pothier, B., 1990, The red cell skeleton and its genetic disorders, in Molecular Aspects of Medicine, Vol. 11 ( H. Baum, J. Gergely, and B. L. Fanburg, eds.), pp. 161–241, Pergamon Press, Elmsford, N.Y.Google Scholar
  46. Denker, B. M., Smith, B. L., Kuhajda, F. P., and Agre, P., 1988, Identification, purification, and partial characterization of a novel M,28,000 integral membrane protein from erythrocytes and renal tubules, J. Biol. Chem. 263: 15634–15642.PubMedGoogle Scholar
  47. De Sandre, G., Ghiotto, G., and Mastella, G., 1956, L’acetilcolinesterasi eritrocitaria. II. Rapporti con le malattie emolitiche, Acta Med. Patay. 16: 310–335.Google Scholar
  48. DeSilva, T. M., Peng, K.C., Speicher. K. D., and Speicher, D. W., 1992 Analysis of human red cell spectrin tetramer (head-to-head) assembly using complementary univalent peptides, Biochemistry 31: 10872–10878.Google Scholar
  49. Devaux, P. F., 1991, Static and dynamic asymmetry in cell membranes, Biochemistry 30: 1163–1173.PubMedCrossRefGoogle Scholar
  50. Devaux, P. F., 1992, Protein involvement in transmembrane lipid asymmetry, Annu. Rev. Biophys. Biomol. Struct. 21: 417–439.PubMedCrossRefGoogle Scholar
  51. Dhermy, D., 1991, The spectrin super-family, Biol. Cell. 71: 249–254.PubMedGoogle Scholar
  52. Dhermy, D., Boulanger, L., Silva, C. J., Galand, C., Bournier, O., Lecomte, M. C., Correia, J. E., Boivin, P., and Garbarz, M., 1992, Spectrin Ponte De Sôr (Gly 151 Asp): A mutation of the spectrin (Sp) a-gene associated with Spali’s hereditary elliptocytosis (HE). Proceedings of the 24th Congress of the International Society of Hematology, London, Abstr. 557.Google Scholar
  53. Dodge, J. T., Mitchell, C., and Hanahan, D. J., 1963, The preparation and chemical characteristic of hemoglobin-free ghosts of human erythrocytes, Arch. Biochem. Biophys. 100: 119–130.PubMedCrossRefGoogle Scholar
  54. Duru, F., Gürgey, A., Oztürk, G., Yôrükan, S., and Altay, C., 1992, Homozygosity for dominant form of hereditary spherocytosis, Br. J. Haematol. 82: 596–600.PubMedCrossRefGoogle Scholar
  55. Eder, P., Soong, C., and Tao, M., 1986, Phosphorylation reduces the affinity of protein 4.1 for spectrin, Biochemistry 25: 1764–1770.PubMedCrossRefGoogle Scholar
  56. Fairbanks, G., Steck, T. L., and Wallach, D. F. H., 1971. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane, Biochemistry 10: 2606–2617.PubMedCrossRefGoogle Scholar
  57. Feddal, S., Brunet, G., Roda, L., Chabanis, S., Alloisio, N., Morlé, L., Ducluzeau, M. T., Maréchal, J., Robert, J. M., Benz, E. J. Jr., Delaunay, J., and Baklouti, F., 1991, Molecular analysis of 4.1(—) hereditary elliptocytosis in the French Northern Alps, Blood 78: 2113–2119.PubMedGoogle Scholar
  58. Feddal, S., Hayette, S., Baklouti, F., Rimokh, R., Wilmotte, R., Magaud, J. P., Maréchal, J., Benz, E. J. Jr., Girot, R., Delaunay, J., and Morlé, L., 1992. Prevalent skipping of an individual exon accounts for shortened protein 4.1 Presles, Blood 80: 2925–2930.PubMedGoogle Scholar
  59. Ferguson, M. A. J., and Williams, A. F., 1988, Cell-surface anchoring of proteins via glycosylphosphatidylinositol structures, Annu. Rev. Biochem. 57: 285–320.PubMedCrossRefGoogle Scholar
  60. Fowler, V. M., 1987, Identification and purification of a novel M, 43,000 tropomyosin-binding protein from human erythrocyte membranes, J. Biol. Chem. 262: 12792–12800.PubMedGoogle Scholar
  61. Fowler, V. M., and Bennett, V., 1984, Erythrocyte membrane tropomyosin. Purification and properties. J. Biol. Chem. 259: 5978–5989.PubMedGoogle Scholar
  62. Fowler, V. M., Davis, J. Q., and Bennett, V., 1985, Human erythrocyte myosin: Identification and purification, J. Cell Biol. 100: 47–55.PubMedCrossRefGoogle Scholar
  63. Fukuda, M. N., 1990, HEMPAS disease: Genetic defect of glycosylation, Glycobiology 1: 9–15.PubMedCrossRefGoogle Scholar
  64. Fukuda, M., Dell, A., and Fukuda, M. N., 1984a, Structure of fetal lactosaminoglycan. The carbohydrate moiety of band 3 isolated from human umbilical cord erythrocytes, J. Biol. Chem. 259: 4782–4791.PubMedGoogle Scholar
  65. Fukuda, M., Dell, A., Oates, J. E., and Fukuda, M. N., 1984b, Structure of branched lactosaminoglycan, the carbohydrate moiety of band 3 isolated from adult human erythrocytes, J. Biot. Chem. 259: 8260–8273.Google Scholar
  66. Fukushima, Y., Byers, M. G., Watkins, P. C., Winkelmann, J. C., Forget B. G., and Shows, T. B., 1990. Assignment of the gene for 3-spectrin (SPTB) to chromosome 14g23—*g24.2 by in situ hybridization, Cytogenet. Cell Genet. 53: 232–233.PubMedCrossRefGoogle Scholar
  67. Gallagher, P. G., Kotula, L., DiPaulo, B., Speicher, D., and Forget, B. G., 1991, Polymorphisms of the aII domain of human a-spectrin and of the 3’ untranslated region of a-spectrin mRNA, Blood 78 (Suppl. 1):364a (Abstr.).Google Scholar
  68. Gallagher, P. G., Tse, W. T., and Forget, B. G., 1992a, Polymerase chain reaction analysis of an Ncol polymorphism of the human erythrocyte ankyrin gene, Blood 80: 1856–1857.PubMedGoogle Scholar
  69. Gallagher, P. G., Segel, G., Marchesi, S. L., and Forget, B. G., 1992b, The gene for erythrocyte band 7.2b in hereditary stomatocytosis, Blood 80(Suppl. 1):276a (Abstr.).Google Scholar
  70. Gallagher, P. G., Tse, W. T., Mohandas, N., Marchesi, S. L., and Forget, B. G., 1992c, Spectrin Providence: A defect of erythrocyte beta spectrin (ß2D19SC—Po) homozygosity for which is associated with fatal hydrops fetalis, Blood 80 (Suppl. 1):145a (Abstr.).Google Scholar
  71. Gardner, K., and Bennett, V., 1986, A new erythrocyte membrane-associated protein with calmodulin binding activity. Identification and purification, J. Biol. Chem. 261: 1339–1348.PubMedGoogle Scholar
  72. Gardner, K., and Bennett, V., 1987, Modulation of spectrin—actin assembly by erythrocyte adducin, Nature 328: 359–362.PubMedCrossRefGoogle Scholar
  73. Gascard, P., Tran, D., Sauvage, M., Sulpice, J. C., Fukami, K., Takenawa, T., Claret, M., and Giraud, F., 1991, Asymmetric distribution of phosphoinositides and phosphatidic acid in the human erythrocyte membrane, Biochim. Biophys. Acta 1069: 27–36.PubMedCrossRefGoogle Scholar
  74. Golan, D. E., and Veatch, W., 1980. Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: Evidence for control by cytoskeletal interactions, Proc. Natl. Acad. Sci. USA 77: 2537–2541.PubMedCrossRefGoogle Scholar
  75. Hänsch, G. M., Schönemark, S., and Roelke, D., 1987, Paroxysmal nocturnal hemoglobinuria type III. Lack of an erythrocyte membrane protein restricting the lysis by C5b-9. J. Clin. Invest. 80: 7–12.PubMedCrossRefGoogle Scholar
  76. Hanspal, M., and Palek, J., 1987, Synthesis and assembly of membrane skeletal proteins in mammalian red cell precursors, J. Cell Biol. 105: 1417–1424.PubMedCrossRefGoogle Scholar
  77. Hanspal, M., Hanspal, J. S., Kalraiya, R., and Palek, J., 1992, The expression and synthesis of the band 3 protein initiates the formation of a stable membrane skeleton in murine Rauscher-transformed erythroid cells, Eur. J. Cell Biol. 58: 313–318.PubMedGoogle Scholar
  78. Harris, A. S., Croall, D. E., and Morrow, J. S., 1988, The calmodulin-binding site in a-fodrin is near the calcium-dependent protease-I cleavage site, J. Biol. Chem. 263: 15754–15761.PubMedGoogle Scholar
  79. Harris, H. W., Jr., and Lux, S. E., 1980, Structural characterization of the phosphorylation sites of human erythrocyte spectrin, J. Biol. Chem. 255: 11512–11520.PubMedGoogle Scholar
  80. Hassoun, H., Coetzer, T. L., Sahr, K. E., Saad, S., Vassiliadis, J. N., and Palek, J., 1992, An insertion within the a-spectrin gene leading to exon skipping in a family with hereditary elliptocytosis (HE) and hereditary pyropoikilocytosis (HPP), Blood 80(Suppl. 1):276a (Abstr.).Google Scholar
  81. Hiebl-Dirschmied, C., Entier, B., Glotzmann, C., Maurer-Faugy, I., Stratowa, C., and Prohaska, R., 1991, Cloning and nucleotide sequence of cDNA encoding human erythrocyte band 7 integral membrane protein, Biochim. Biophys. Acta 1090: 123–124.PubMedCrossRefGoogle Scholar
  82. Hoffman, N., Stanislovitis, P., Watkins, P. C., Klinger, K. W., Linnenbach, A. J., and Forget, B. G., 1987, Three RFLPs are detected by an alpha spectrin genomic clone, Nucleic Acids Res. 15: 4696.PubMedCrossRefGoogle Scholar
  83. Home, W. C., Leto, T. L., and Marchesi, V. T., 1985, Differential phosphorylation of multiple sites in protein 4.1 and protein 4.9 by phorbol ester-activated and cyclic AMP-dependent protein kinases. J. Biol. Chem. 260: 9073–9076.Google Scholar
  84. Huebner, K., Palumbo, A. P., Isobe, M., Kozak, C. A., Monaco, S., Rovera, G., Croce, C. M., and Curtis, P. J., 1985, The a-spectrin gene is on chromosome 1 in mouse and man, Proc. Nad. Acad. Sci. USA 82: 3790–3793.CrossRefGoogle Scholar
  85. Husain-Chishti, A., Levin, A., and Branton. D., 1988, Abolition of actin-bundling by phosphorylation of human erythrocyte protein 4.9, Nature 334: 718–721.PubMedCrossRefGoogle Scholar
  86. Husain-Chishti, A., Faquin, W., Wu, C. C., and Branton, D., 1989, Purification of erythrocyte dematin (protein 4.9) reveals an endogenous protein kinase that modulates actin-bundling activity, J. Biol. Chem. 264: 8985–8991.PubMedGoogle Scholar
  87. Inaba, M., and Maede, Y., 1989, O-N-Acetyl-D-glucosamine moiety on discrete peptide of multiple protein 4.1 isoforms regulated by alternative pathways, J. Biol. Chem. 264: 18149–18155.PubMedGoogle Scholar
  88. Inaba, M., Gupta, K. C., Kuwabara, M., Takahashi, T., Benz, E. J. Jr., and Maede, Y., 1992, Deamidation of human erythrocyte protein 4.1: Possible role in aging. Blood 12: 3355–3361.Google Scholar
  89. Iolascon, A., Miraglia del Giudice, E., Camaschella, C., Pinto, L., Nobili, B., Perrotta, S., and Cutillo, S., 1991, Ankyrin deficiency in dominant hereditary spherocytosis: Report of three cases, Br. J. Haematol. 78: 551–554.PubMedCrossRefGoogle Scholar
  90. Jarolim, P., Brabec, V., Lambert, S., Liu, S. C., Zhou, Z., and Palek, J., 1990, Ankyrin Prague: A dominantly inherited mutation of the regulatory domain of ankyrin associated with hereditary spherocytosis, Blood 76(Suppl. l):37a (Abstr.).Google Scholar
  91. Jarolim, P., Palek, J., Amato, D., Hassan, K., Sapak, P., Nurse, G. T., Rubin, H. L., Zhai, S., Sahr, K. E., and Liu, S. C., 1991, Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis, Proc. Natl. Acad. Sci. USA 88: 11022–11026.PubMedCrossRefGoogle Scholar
  92. Jarolim, P., Rubin, H., Brabec, V., and Palek, J., 1992a, Substitution Asp38→Ala (GAC→GCC) in the cytoplasmic domain of erythroid band 3 protein is associated with increased severity of hereditary spherocytosis, Proceedings of the 24th Congress of the International Society of Hematology, London, Abstr. 142.Google Scholar
  93. Jarolim, P., Rubin, H., Brabec, V., and Palek, J., 1992b, Band 3 Prague: A duplication of 10 bases in the erythroid band 3 gene in a kindred with hereditary spherocytosis with band 3 deficiency, Blood 80(Suppl. 1):277a (Abstr.).Google Scholar
  94. Jarolim, P., Palek, J., Rubin, H. L., Prchal, J. T., Korsgren, C., and Cohen, C. M., 1992c, Band 3 Tuscaloosa: Pro327—sArg327 substitution in the cytoplasmic domain of erythrocyte band 3 protein associated with spherocytic hemolytic anemia and partial deficiency of protein 4.2, Blood 80: 523529.Google Scholar
  95. Jarolim, P., Rubin, H. L., Zhai, S., Sahr, K. E., Liu, S. C., Mueller, T. J., and Palek. J., 1992d, Band 3 Memphis: A widespread polymorphism with abnormal electrophoretic mobility of erythrocyte band 3 protein caused by substitution AAG→GAG (Lys— Glu) in codon 56, Blood 80: 1592–1598.PubMedGoogle Scholar
  96. Jöns, T., and Drenckhahn, D., 1992, Identification of the binding interface involved in linkage of cytoskeletal protein 4.1 to the erythrocyte anion exchanger, EMBO J. 11: 2863–2867.PubMedGoogle Scholar
  97. Joshi, R., Gillighan, D. M., Otto, E., McLaughin, T., and Bennett, V., 1991, Primary structure and domain organization of human alpha and beta adducin. J. Cell Biol. 115: 665–675.PubMedCrossRefGoogle Scholar
  98. Juliano, R. L., 1973, The proteins of the erythrocyte membrane, Biochim. Biophys. Acta 300: 341–378.PubMedCrossRefGoogle Scholar
  99. Kanzaki, A., and Yawata, Y., 1992, Hereditary stomatocytosis: Phenotypical expression of sodium transport and band 7 peptides in 44 cases, Br. J. Haematol. 82: 133–141.PubMedCrossRefGoogle Scholar
  100. Karinch, A. M., Zimmer, W. E., and Goodman, S. R., 1990, The identification and sequence of the actin-binding domain of human red blood cell 3-spectrin, J. Biol. Chem. 265: 11833–11840.PubMedGoogle Scholar
  101. Kay, M. M. B., Marchalonis. J. J., Schluter, S. F., and Bosman. G., 1991, Human erythrocyte aging: Cellular and molecular biology. Transfus. Med. Rev. 5: 173–195.CrossRefGoogle Scholar
  102. Kennedy, S. P., Warren, S. L., Forget, B. G., and Morrow, J. S., 1991, Ankyrin binds to the 15th repetitive unit of erythroid and non erythroid 13-spectrin, J. Cell Biol. 115: 267–277.PubMedCrossRefGoogle Scholar
  103. Kinoshita, T., Medof, M. E., and Silber, R., 1985, Distribution of decay accelerating factor (DAF) in the peripheral blood of normal individuals and patients with paroxysmal nocturnal hemoglobinuria (PNH), J. Exp. Med. 162: 75–92.PubMedCrossRefGoogle Scholar
  104. Kopito, R. R., Andersson, M. A., and Lodish, H. F., 1987, Multiple tissue-specific sites of transcription initiation of the mouse antiport gene in erythroid and renal cells, Proc. Natl. Acad. Sci. USA 84: 7149–7153.PubMedCrossRefGoogle Scholar
  105. Kornberg, R. D., and McConnell, H. M., 1971. Inside—outside transitions of phospholipids in vesicle membranes, Biochemistry 10: 1111–1120.PubMedCrossRefGoogle Scholar
  106. Korsgren, C., and Cohen, C. M., 1986, Purification and properties of human erythrocyte band 4.2, J. Biol. Chem. 261: 5536–5543.PubMedGoogle Scholar
  107. Korsgren, C., and Cohen, C. M., 1988, Associations of human erythrocyte band 4.2. Binding to ankyrin and to the cytoplasmic domain of band 3. J. Biot. Chem. 263: 10212–10218.Google Scholar
  108. Korsgren, C., and Cohen, C. M., 1991, Organization of the gene for human erythrocyte membrane protein 4.2: Structural similarities with the gene for the a subunit of factor XIII. Proc. Natl. Acad. Sci. USA 88: 4840–4844.PubMedCrossRefGoogle Scholar
  109. Korsgren, C., Lawler, J., Lambert. S., Speicher, D., and Cohen, C. M., 1990, Complete amino acid sequence and homologies of human erythrocyte membrane protein band 4.2, Proc. Natl. Acad. Sci. USA 87: 613–617.Google Scholar
  110. Kotula, L., Laury-Kleintrop, L. D., Showe, L., Sahr, K., Linnenbach, A. J., Forget, B., and Curtis, P. J., 1991, The exon—intron organization of the human erythrocyte a-spectrin gene, Genomics 9: 131–140.PubMedCrossRefGoogle Scholar
  111. Kuypers, F. A., Lubin, B. H., Yee, M., Agre, P., Devaux, P. F., and Geldwerth, D., 1993 The distribution of erythrocyte phospholipids in hereditary spherocytosis demonstrates a minimal role of erythrocyte spectrin on phospholipid diffusion and asymmetry, Blood 81: 1051–1057.PubMedGoogle Scholar
  112. Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227: 680–685.PubMedCrossRefGoogle Scholar
  113. Lambert, S., Yu. H., Prchal, J. T., Lawler, J., Ruff, P., Speicher, D., Cheung, M. C., Kan, Y. W., and Palek, J., 1990, cDNA sequence for human erythrocyte ankyrin, Proc. Natl. Acad. Sci. USA 87: 1730–1734.Google Scholar
  114. Leto, T. L., and Marchesi, V. T., 1984, A structural model of human erythrocyte protein 4.1, J. Biol. Chem. 259: 4603–4608.PubMedGoogle Scholar
  115. Leto, T. L., Fortugno-Erikson, D., Barton, D., Yang-Feng, T. L., Francke, U., Harris, A. S., Morrow, J. S., Marchesi, V. T., and Benz, E. J. Jr., 1988, Comparison of nonerythroid alpha-spectrin genes reveals strict homology among diverse species, Mol. Cell. Biol. 8: 1–9.PubMedGoogle Scholar
  116. Leto, T. L., Pleasic, S., Forget, B. G., Benz, E. J., Jr., and Marchesi, V. T., 1989, Characterization of the calmodulin-binding site of non-erythroid a-spectrin, J. Biol. Chem. 264: 5826–5830.PubMedGoogle Scholar
  117. Ling, E., Danilov, Y., and Cohen, C., 1988, Modulation of red cell band 4.1 function by cAMP-dependent kinase and protein kinase C phosphorylation, J. Biol. Chem. 263: 2209–2216.PubMedGoogle Scholar
  118. Liu, S. C., Derick, L. H., and Palek, J., 1987, Visualization of the hexagonal lattice in the erythrocyte membrane skeleton, J. Cell Biol. 104: 527–536.PubMedCrossRefGoogle Scholar
  119. Low, P. S., 1986, Structure and function of the cytoplasmic domain of band 3: Center of erythrocyte membrane—peripheral protein interactions. Biochim. Biophys. Acta 864: 145–147.PubMedCrossRefGoogle Scholar
  120. Low, P. S., Allen, D. P., Zioncheck, T. F., Chari, P., Willardson, B. M., Geahlen, R. L., and Harrison. M. L., 1987, Tyrosine phosphorylation of band 3 inhibits peripheral protein binding, J. Biol. Chem. 262: 4592–4596.PubMedGoogle Scholar
  121. Lu, P. W., Soong, C. J., and Tao, M., 1985, Phosphorylation of ankyrin decreases its affinity for spectrin tetramer, J. Biol. Chem. 260: 14958–14964.PubMedGoogle Scholar
  122. Luna, E. J., and Hitt, A. L., 1992, Cytoskeleton—plasma membrane interactions, Science 258: 955–964.PubMedCrossRefGoogle Scholar
  123. Lux, S. E., John, K. M., Kopito, R. R., and Lodish, H. F., 1989, Cloning and characterization of band 3, the human erythrocyte anion-exchange protein (AE1), Proc. Natl. Acad. Sci. USA 86: 9089–9093.PubMedCrossRefGoogle Scholar
  124. Lux, S. E., John, K. M., and Bennett, V., 1990a. Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins, Nature 344: 36–42.PubMedCrossRefGoogle Scholar
  125. Lux, S. E., Tse, W. T., Menninger, J. C., John, K. M., Harris, P., Shalev, O., Chilcote, R. R., Marchesi, S. L., Watkins, P. C., Bennett, V., McIntosh, S., Collins, F. S., Francke, U., Ward, D. C., and Forget, B. G., 1990b, Hereditary spherocytosis associated with deletion of human erythrocyte ankyrin gene on chromosome 8. Nature 345: 736–739.PubMedCrossRefGoogle Scholar
  126. McMahon, A. P., Giebelhaus, D., Champion, J. E., Bailes, J. A., Lacey, S., Carritt, B., Henchman, S. K., and Moon, R. T.. 1987, cDNA cloning, sequencing and chromosome mapping of a nonerythroid spectrin, human a-fodrin, Differentiation 34: 68–78.Google Scholar
  127. Metzenberg, A. B., and Gitschier, J., 1992, The gene encoding the palmitoylated erythrocyte membrane protein, p55, originates at the CpG island 3’ to the factor VIII gene, Hum. Mol. Genet. 1: 97–101.PubMedCrossRefGoogle Scholar
  128. Miraglia del Giudice, E., Perrotta, S., Sciarratta, G., Cutillo, S., Pinto, L., and lolascon, A., 1992, al/74 spectrin Genova: A new elliptocytogenic variant due to Arg—’Trp substitution at position 34 of a-spectrin, Blood 80 (Suppl. 1):277a (Abstr.).Google Scholar
  129. Mische, S. M., Mooseker, M. S., and Morrow, J. S., 1987, Erythrocyte adducin: A calmodulin regulated actin-bundling protein that stimulates spectrin—actin binding. J. Cell Biol. 105: 2837–2845.PubMedCrossRefGoogle Scholar
  130. Mohandas, N., Winardi, R., Knowles, D., Leung, A., Parra, M., George, E., Conboy, J., and Chasis, J., 1992. Molecular basis for membrane rigidity of hereditary ovalocytosis: A novel mechanism involving the cytoplasmic domain of band 3, J. Clin. Invest. 89: 686–692.PubMedCrossRefGoogle Scholar
  131. Mombers, C., de Gier, J., Demel, R. A., and van Deenen, L. L. M., 1980, Spectrin—phospholipid interaction: A monolayer study, Biochim. Biophvs. Acta 603: 52–62.CrossRefGoogle Scholar
  132. Morlé, L., Garbarz, M., Alloisio, N., Girot, R., Chaveroche, I., Boivin, P., and Delaunay, J., 1985. The characterization of protein 4.1 Presles, a shortened variant of RBC membrane protein 4.1, Blood 65: 1511–1517.PubMedGoogle Scholar
  133. Morlé, L., Morlé, F., Roux, A. F., Godet, J., Forget, B. G., Denoroy, L., Garbarz, M., Dhermy, D., Kastally, R., and Delaunay, J., 1989, Spectrin Tunis (Span’), an elliptocytogenic variant, is due to the CGG—sTGG codon change (Arg→Trp) at position 35 of the aI domain, Blood 74: 828–832.PubMedGoogle Scholar
  134. Morlé, L., Roux, A. F., Alloisio, N., Pothier, B., Starck, J., Denoroy, L., Morlé, F., Rudigoz, R. C., Forget, B. G., Delaunay. J., and Godet, J., 1990. Two elliptocytogenic a’n’ variants of the spectrin al domain: Spectrin Culoz (GGT→GTT: aI 40 Gly→Val) and spectrin Lyon (CTT→TTT; al 43 Leu—*Phe), J. Clin. Invest. 86: 548–554.Google Scholar
  135. Morris, S. A., Eber, S. W., and Gratzer, W. B., 1989, Structural basis for the high activation energy of spectrin self-association, FEES Lett. 244: 68–70.CrossRefGoogle Scholar
  136. Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R., Allard, W. J., Lienhard, G. E., and Lodish, H. F., 1985, Sequence and structure of a human glucose transporter, Science 229: 941–945.PubMedCrossRefGoogle Scholar
  137. Mueller, T. J., and Morrison, M., 1981, Glycoconnectin (PAS2), a membrane attachment site for the human erythrocyte cytoskeleton. Erythrocyte membrane 2, in Recent Clinical and Experimental Advances ( W. C. Kruckeberg, J. W. Eaton, and G. J. Brewer, eds.), pp. 95–112, Liss, New York.Google Scholar
  138. Najfeld, V., Ballard, S. G., Menninger, J., Ward, D. C., Bouhassira, E. E., Schwartz, R. S., Nagel, R. L., and Rybicki, A. C., 1992, The gene for human erythrocyte protein 4.2 maps to chromosome 15815, Am. J. Hum. Genet. 50: 71–75.PubMedGoogle Scholar
  139. Nicholson-Weller, A., March, J. P., Rosenfeld, S. I., and Austen, K. F., 1983, Affected erythrocytes of patients with paroxysmal nocturnal hemoglobinuria are deficient in the complement regulatory protein, decay accelerating factor. Proc. Natl. Acad. Sci. USA 80: 5066–5070.PubMedCrossRefGoogle Scholar
  140. Oni, S. B., Osukoya, B. O., and Luzzatto, L., 1970, Paroxysmal nocturnal hemoglobinuria: Evidence for monoclonal origin of abnormal red cells. Blood 36: 145–152.PubMedGoogle Scholar
  141. Op den Kamp, J. A. F., 1979, Lipid asymmetry in membranes, Annu. Rev. Biochem. 48: 47–71.CrossRefGoogle Scholar
  142. Otto, E., Kunimoto, M., McLaughin, T., and Bennett, V., 1991. Isolation and characterization of cDNAs encoding human brain ankyrins reveal a family of alternatively spliced genes, J. Cell Biol. 114: 241–253.PubMedCrossRefGoogle Scholar
  143. Pangburn, M. K., Schreiber, R. D., and Müller-Eberhard, H. J., 1983, Deficiency of an erythrocyte membrane protein with complement regulatory activity in paroxysmal nocturnal hemoglobinuria, Proc. Nall. Acad. Sci. USA 80: 5430–5434.CrossRefGoogle Scholar
  144. Pasternack, G. R., and Racusen, R. H., 1989. Erythrocyte protein 4.1 binds and regulates myosin, Proc. Natl. Acad. Sci. USA 86: 9712–9716.PubMedCrossRefGoogle Scholar
  145. Pasternack, G. R., Anderson, R. A., Leto, T. L., and Marchesi, V. T.. 1985, Interactions between protein 4.1 and band 3. An alternative binding site for an element of the membrane skeleton, J. Biol. Chem. 260: 3676–3683.PubMedGoogle Scholar
  146. Peters, L. L., Birkenmeier, C. S., Bronson, R. T., White, R. A., Lux, S. E., Otto, E., Bennett, V., Higgins, A., and Barker, J. E., 1991. Purkinje cell degeneration associated with erythroid ankyrin deficiency in nb/nb mice. J. Cell Biol. 114: 1233–1241.PubMedCrossRefGoogle Scholar
  147. Pinto da Silva, P., Parkison, C., and Dwyer, N., 1981. Fracture-label: Cytochemistry of freeze-fracture faces in the erythrocyte membrane, Proc. Natl. Acad. Sci. USA 78: 343–347.PubMedCrossRefGoogle Scholar
  148. Polymeropoulos, M. H., Rath, D. S., Xiao, H., and Merril, C. R., 1990, Dinucleotide repeat polymorphism at the human ankyrin gene (ANK I), Nucleic Acids Res. 19: 969.CrossRefGoogle Scholar
  149. Ponder, E., 1948. Shape changes unaccompanied by volume changes, in Hemolysis and Related Phenomena, pp. 10–49, Grune & Stratton, New York.Google Scholar
  150. Prchal, J. T., Morley, B. J., Yoon, S. H., Coetzer, T. L., Palek, J., Conboy, J. G., and Khan, Y. W., 1987, Isolation and characterization of cDNA clones for human erythrocyte 3- spectrin, Proc. Natl. Acad. Sci. USA 84: 7468–7472.PubMedCrossRefGoogle Scholar
  151. Preston, G. M., and Agre, P., 1991, Isolation of the cDNA for erythrocyte integral membrane protein of 28-kilodaltons: Member of an ancient channel family, Proc. Natl. Acad. Sci. USA 88: 11110–11114.PubMedCrossRefGoogle Scholar
  152. Raeymaekers, P., Van Broeckhoven, C., Backhovens, H., Wehnert, A., Muylle, L., De Jonghe, P., Gheuens, J., and Vandenberghe, A., 1988, The Duffy blood group is linked to the a-spectrin locus in a large pedigree with autosomal dominant inheritance of Charcot—Marie—Tooth disease type 1. Hum. Genet. 78: 76–78.PubMedCrossRefGoogle Scholar
  153. Reid, M. E., Takakuwa, Y., Conboy, J., Tchernia, G., and Mohandas, N., 1990, Glycophorin C content of human erythrocyte membrane is regulated by protein 4.1, Blood 75: 2229–2234.PubMedGoogle Scholar
  154. Reid, M. E., Mallison, G., Sim, R. B., Poole, J., Pausch, V., Merry, A. H., Liew, Y. W., and Tanner, M. J. A., 1991, Biochemical studies on red blood cells from a patient with the Inab phenotype (decay-accelerating factor deficiency). Blood 78: 3291–3297.PubMedGoogle Scholar
  155. Risinger, M. A., Dotimas, E. M., and Cohen, C. M., 1992, Human erythrocyte protein 4.2, a high copy number membrane protein, is N-myristylated, J. Biol. Chem. 267: 5680–5685.PubMedGoogle Scholar
  156. Roberts, W. L., Santikarn, S., Reinhold, V. N., and Rosenberry, T. L., 1988, Structural characterization of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase by fast atom bombardment mass spectroscopy, J. Biol. Chem. 263: 18776–18784PubMedGoogle Scholar
  157. Rosse, W. F., 1990, Phosphatidylinositol-linked proteins and paroxysmal nocturnal hemoglobinuria, Blood 75: 1595–1601.PubMedGoogle Scholar
  158. Rotoli, B., and Luzzatto, L., 1989. Paroxysmal nocturnal hemoglobinuria, Semin. Hematol. 26: 20 1207Google Scholar
  159. Ruff, P., Speicher, D. W., and Husain-Chishti, A., 1991, Molecular identification of a major palmitoylated erythrocyte membrane protein containing the src homology 3 motif, Proc. Natl. Acad. Sci. USA 88: 6595–6599.PubMedCrossRefGoogle Scholar
  160. Rybicki, A. C., Heath, R., Lubin, B., and Schwartz, R. S., 1988, Human erythrocyte protein 4.1 is a phosphatidylserine binding protein, J. Clin. Invest. 81: 255–260.PubMedCrossRefGoogle Scholar
  161. Sahr, K. E., Laurila, P., Kotula, L., Scarpa, A. L., Coupai, E., Leto, T. L., Linnenbach, A. J., Winkelmann, J. C., Speicher, D. W., Marchesi, V. T., Curtis, P. J., and Forget, B. G., 1990, The complete cDNA and polypeptide sequences of human erythroid a-spectrin, J. Biol. Chem. 265: 4434–4443.PubMedGoogle Scholar
  162. Sahr, K. E., Coetzer, T. L., Moy, L. S., Derick, L. H., Chishti, A. H., Jarolim, P., Gallanello, R., Cao, A., Liu, S. C., and Palek, J., 1992, An Ala to Gly substitution in 3-spectrin associated with spectrin aI/“ in hereditary elliptocytosis (HE) and hereditary pyropoikilocytosis (HPP), Blood 80 (Suppl. 1): 1095 (Abstr.).Google Scholar
  163. Sauberman, N., Fortier, N. L., Fairbanks, G., O’Connor, R. J., and Snyder, M. L., 1979, Red cell membrane in hemolytic disease. Studies on variables affecting electrophoretic analysis, Biochim. Biophys. Acta 566: 292–313.Google Scholar
  164. Schofield, A. E., Tanner, M. J., Pinder, J. C., Clough, B., Bayley, P. M., Nash, G. B., Dluzewski, A. R., Reardon, D. M., Cox, T. M., and Wilson, R. J., 1992, Basis of unique red cell membrane properties in hereditary ovalocytosis, J. Mol. Biol. 223: 949–958.PubMedCrossRefGoogle Scholar
  165. Seigneuret, M., and Devaux, P. F., 1984, ATP-dependent asymmetry distribution of spin-labeled phospholipids in the erythrocyte membrane: Relation to shape changes, Proc. Natl. Acad. Sci. USA 81: 3751–3755.PubMedCrossRefGoogle Scholar
  166. Shen, B. W., Joseph, R., and Steck, T. L., 1984. Ultrastructure of unit fragments on the skeleton of the human erythrocyte membrane, J. Cell Biol. 99: 810–821.PubMedCrossRefGoogle Scholar
  167. Shohet, S. B., 1972, Hemolysis and changes in erythroid membrane lipids, N. Engl. J. Med. 286: 577–583.PubMedCrossRefGoogle Scholar
  168. Shotton, D. M., Burke, B. E., and Branton, D., 1979. The molecular structure of human erythrocyte spectrin: Biophysical and electron microscopic studies, J. Mol. Biol. 131: 303–329.PubMedCrossRefGoogle Scholar
  169. Showe, L. C., Ballantine, M., and Huebner, K., 1987, Localization of the gene for the erythroid anion exchange protein, band 3 (EMPB3), to human chromosome 17, Genomics 1: 71–76.PubMedCrossRefGoogle Scholar
  170. Siegel, D. L., and Branton. D., 1985, Partial purification and characterization of an actin-bundling protein, band 4.9 from human erythrocytes, J. Cell Biol. 100: 775–785.PubMedCrossRefGoogle Scholar
  171. Smith, B. L., and Agre, P., 1991, Erythrocyte Mr-28.000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins, J. Biol. Chem. 266: 6407–6415.PubMedGoogle Scholar
  172. Sondag, D., Alloisio, N., Blanchard, D., Ducluzeau, M. T., Colonna, P., Bachir, D., Bloy, C., Cartron, J. P., and Delaunay, J., 1987, Gerbich reactivity in 4.1(—) hereditary elliptocytosis and protein 4.1 level in blood group Gerbich deficiency, Br. J. Haematol. 65: 43–50.PubMedCrossRefGoogle Scholar
  173. Speicher, D. W., and Marchesi, V. T., 1984, Erythrocyte spectrin is comprised of many homologous triple helical segments, Nature 311: 177–180.PubMedCrossRefGoogle Scholar
  174. Speicher, D. W., Weglarz, L., and DeSilva, T. M., 1992, Properties of human red cell spectrin heterodimer (side-to-side) assembly and identification of an essential nucleation site, J. Biol. Chem. 267: 14775–14782.PubMedGoogle Scholar
  175. Speicher, D. W., DeSilva, T. M., Speicher, K. D., Ursitti, J. A., Hembach, P., and Weglarz, L., 1993 Location of the human red cell spectrin tetramer binding site and detection of a related “closed” hairpin loop dimer using proteolytic footprinting, J. Biol. Chem. 268: 4227–4235.PubMedGoogle Scholar
  176. Staufenbiel, M., and Lazarides, E., 1986, Ankyrin is fatty acid acylated in erythrocytes, Proc. Natl. Acad. Sci. USA 83: 318–322.PubMedCrossRefGoogle Scholar
  177. Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane, J. Cell Biol. 62: 1–19.PubMedCrossRefGoogle Scholar
  178. Stewart, E. A., Kopito, R., and Bowcock, A. M., 1989, A PstI polymorphism for the human erythrocyte surface protein band 3 (EPB3) demonstrates close linkage of EPB3 to the nerve growth factor receptor, Genomics 5: 633–635.PubMedCrossRefGoogle Scholar
  179. Stewart, G. W., Hepworth-Jones, B. E., Keen, J. N., Dash, B. C. J., Argent, A. C., and Casimir, C. M., 1992, Isolation of cDNA coding for an ubiquitous membrane protein deficient in high Na+ low K+ stomatocytic erythrocytes, Blood 79: 1593–1601.PubMedGoogle Scholar
  180. Subrahmamyan, G., Bertics, P. J., and Anderson, R. A., 1991, Phosphorylation of protein 4.1 on tyrosine-418 modulates its function in vitro, Proc. Natl. Acad. Sci. USA 88: 5222–5226CrossRefGoogle Scholar
  181. Sung, L. A., Chien, S., Chang, L. S., Lambert, K., Bliss, S. A., Bouhassira, E. E., Nagel, R. R., Schwartz, R. S., and Rybicki, A. C., 1990. Molecular cloning of human protein 4.2: A major component of the erythrocyte membrane, Proc. Natl. Acad. Sci. USA 87: 955–959.PubMedCrossRefGoogle Scholar
  182. Sung, L. A., Chien, S., Fan, Y. S., Lin, C. C., Lambert, K., Zhu, L., Lam, J. S., and Chang, L. S., 1992, Human erythrocyte protein 4.2: Isoform expression, differential splicing, and chromosomal assignment, Blood 79: 2763–2770.PubMedGoogle Scholar
  183. Tang, C. J. C., and Tang, T. K., 1991. Rapid localization of membrane skeletal protein 4.1 (ELI) to human chromosome 1p33–34.2 by nonradioactive in situ hybridization, Cytogenet. Cell. Genet. 57: 119.PubMedCrossRefGoogle Scholar
  184. Tang, T. K., Leto, T. L., Correas, I., Alonso, M. A., Marchesi, V. T., and Benz, E. J. Jr., 1988, Selective expression of an erythroid-specific isoform of protein 4.1, Proc. Natl. Acad. Sci. USA 85: 3713–3717.PubMedCrossRefGoogle Scholar
  185. Tang, T. K., Qin, Z., Leto, T., Marchesi, V. T., and Benz, E. J. Jr., 1990. Heterogeneity of mRNA and protein products arising from the protein 4. I gene in erythroid and nonerythroid tissues. J. Cell Biol. 110: 617–624.PubMedCrossRefGoogle Scholar
  186. Tang, T. K., Ko, Y. L., and Lien, W. P., 1991a, A Stul RFLP in the human 3-spectrin gene (SPTB), Nucl. Acids Res. 19: 2515CrossRefGoogle Scholar
  187. Tang, T. K., Tam, K. B., and Chien, S., 1991b, Two RFLPs in the human protein 4.1 gene (ELI), Nucleic Acids Res. 19: 6057.PubMedCrossRefGoogle Scholar
  188. Tanner, M. J. A., Martin, P. G., and High, S., 1988, The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence, Biochem. J. 256: 703–712.PubMedGoogle Scholar
  189. Tchernia, G., Mohandas, N., and Shohet, S. B., 1981. Deficiency of skeletal membrane protein band 4.1 in homozygous hereditary elliptocytosis. Implications for erythrocyte membrane stability, J. Clin. Invest. 68: 454–460.PubMedCrossRefGoogle Scholar
  190. Telen, M. J., and Green, A. M., 1989, The Inab phenotype: Characterization of the membrane protein and complement regulatory defect. Blood 74: 437–441.PubMedGoogle Scholar
  191. Telen, M. J., Hall, S. E., Green, A. M., Moulds, J. J., and Rosse, W. F., 1988, Identification of human erythrocyte blood group antigens on decay accelerating factor (DAF) and identification of an erythrocyte phenotype negative for DAF, J. Exp. Med. 167: 1993–1998.PubMedCrossRefGoogle Scholar
  192. Tse, W. T., Lecomte, M. C., Costa, F. F., Garbarz, M., Feo, C., Boivin, P., Dhermy, D., and Forget, B. G., 1990. Point mutation in the I3-spectrin gene associated with a hereditary elliptocytosis. Implications for the mechanism of spectrin dimer self-association, J. Clin. Invest. 86: 909–916.PubMedCrossRefGoogle Scholar
  193. Tse, W. T., Menninger, J. C., Yank Feng, T. L., Franke, U., Sahr, K. E., Lux, S. E., Ward, D. C., and Forget, B. G., 1991, Isolation and chromosomal localization of a novel nonerythroid ankyrin gene, Genomics 10: 858–866.PubMedCrossRefGoogle Scholar
  194. Tsuji, A., Kawasaki, K., Ohnishi, S. I., Merkle, H., and Kusumi, A., 1988, Regulation of band 3 mobilities in erythrocyte ghost membranes by protein association and cytoskeletal meshwork, Biochemistry 27: 7447–7452.PubMedCrossRefGoogle Scholar
  195. Turner, J. D., and Rouser, G., 1970. Precise quantitative determination of human blood lipids by thin-layer triethylaminoethylcellulose column chromatography. I. Erythrocyte lipids, Anal. Biochem. 38: 423–436.PubMedCrossRefGoogle Scholar
  196. Ungewickell, E., and Gratzer, W., 1978, Self-association of human spectrin. A thermodynamic and kinetic study, Eur. J. Biochem. 88: 379–385.PubMedCrossRefGoogle Scholar
  197. Ursitti, J. A., Pumplin, D. W., Wade, J. B., and Bloch, R. J., 1991, Ultrastructure of the human erythrocyte cytoskeleton and its attachment to the membrane, Cell Motif. Cytoskel. 19: 227–243.CrossRefGoogle Scholar
  198. Viitala, J., and Järnefelt, J., 1985, The red cell surface revisited, Trends Biochem. Sci. 10: 392–395.CrossRefGoogle Scholar
  199. Wang, D., Mentzer, W. C., Cameron, T., and Johnson, R. M., 1991. Purification of band 7.2b. a 31-kDa integral phosphoprotein absent in hereditary stomatocytosis, J. Biol. Chem. 266: 17826–17831.PubMedGoogle Scholar
  200. Wang, D., Turetsky, T., Perrine, S., Johnson, R. M., and Mentzer, W. C., 1992, Further studies on RBC membrane protein 7.2b deficiency in hereditary stomatocytosis. Blood 80(Suppl. 1):275a (Abstr.).Google Scholar
  201. White, R. A., Birkenmeier, C. S., Lux, S. E., and Barker, J. E., 1990, Ankyrin and the hemolytic anemia mutation, nb, map to mouse chromosome 8: Presence of the nb allele is associated with a truncated erythrocyte ankyrin, Proc. Natl. Acad. Sci. USA 87: 3117–3121.PubMedCrossRefGoogle Scholar
  202. White, R. A., Peters, L. L., Adkison, L. R., Korsgren, C., Cohen, C. M., and Lux, S. E., 1992, The murine pallid mutation is a platelet storage pool disease associated with the protein 4.2 (pallidin) gene, Nature Genet. 2: 80–83.PubMedCrossRefGoogle Scholar
  203. Whitfield, C. F., Follweiler, J. B., Lopreski-Morrow, L., and Miller, B. A., 1991, Deficiency of etspectrin synthesis in burst-forming units-erythroid in lethal hereditary spherocytosis, Blood 78: 3043–3051PubMedGoogle Scholar
  204. Wilmotte, R., Maréchal, J., Morlé, L., Baklouti, F., Philippe, N., Kastally, R., Kotula, L., Delaunay, J., and Alloisio, N., 1993 Low expression allele a of red cell spectrin is associated with mutations in exon 40 (aW polymorphism) and intron 45, and with partial skipping of exon 46. J. Clin. Invest. 91: 2091–2096.PubMedCrossRefGoogle Scholar
  205. Winkelmann, J. C., Leto, T. L., Watkins, P. C., Eddy, R., Shows, T. B., Linnenbach, A. J., Sahr, K. E., Kathuria, N., Marchesi, V. T., and Forget, B. G., 1988, Molecular cloning of the cDNA for human erythrocyte I3-spectrin, Blood 72: 328–334.PubMedGoogle Scholar
  206. Winkelmann, J. C., Costa, F. F., Linzie, B. L., and Forget, B. G., 1990a, f3-Spectrin in human skeletal muscle. Tissue-specific differential processing of 3’ f3-spectrin pre-mRNA generates a 3-spectrin isoform with a unique carboxyl terminus, J. Biol. Chem. 265: 20449–20454.Google Scholar
  207. Winkelmann, J. C., Chang, J. G., Tse, W. T., Scarpa, A. L., Marchesi, V. T., and Forget, B. G., 1990b, Full-length sequence of the cDNA for human erythroid (3-spectrin, J. Biol. Chem. 265: 11827–11832.PubMedGoogle Scholar
  208. Winograd, E., Hume, D., and Branton, D., 1991, Phasing the conformational unit of spectrin, Proc. Natl. Acad. Sci. USA 88: 10788–10791.PubMedCrossRefGoogle Scholar
  209. Wong, A. J., Kiehart, D. P., and Pollard, T. D., 1985, Myosin from human erythrocytes, J. Biol. Chem. 260: 46–49.PubMedGoogle Scholar
  210. Yamakawa, T., and Nagai, Y., 1978, Glycolipids at the cell surface and their biological functions, Trends Biochem. Sci. 3: 128–131.CrossRefGoogle Scholar
  211. Yannoukakos, D., Vasseur, C., Driancourt, C., Blouquit, Y., Delaunay, J., Wajcman, H., and Bursaux, E., 1991, Human erythrocyte band 3 polymorphism (“band 3 Memphis”): Characterization of the structural modification (Lys 56–9’GIu) by protein chemistry methods, Blood 78: 1117–1120.PubMedGoogle Scholar
  212. Yawata, Y., 1993, Band 4.2 abnormalities in human red cells, Am. J. Med. Sci. 307: 190–203CrossRefGoogle Scholar
  213. Zalman, L. S., Wood, L. M., and Frank, M. M., 1987, Deficiency of the homologous restriction factor in paroxysmal nocturnal hemoglobinuria, J. Exp. Med. 165: 572–577.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Jean Delaunay
    • 1
  1. 1.Unité de Recherche Associée 1171 du Centre National de la Recherche Scientifique, (CNRS)Institut Pasteur de LyonLyon Cedex 07France

Personalised recommendations