Skip to main content

Heterogeneity of Mononuclear Phagocytes

An Interpretive Review

  • Chapter

Part of the Blood Cell Biochemistry book series (BLBI,volume 5)

Abstract

In this chapter we would like to review evidence supporting the concept that there is extensive heterogeneity of mammalian mononuclear phagocytes. Given the limits of this chapter, we will summarize data supporting this notion rather than provide an in-depth review of particular characteristics and functions of these cells. Therefore, the main subjects will be the mononuclear phagocyte system as a whole and the heterogeneous features of the various members of the system expressed both phenotypically and functionally. Finally, we will discuss various models that may explain how mononuclear phagocyte heterogeneity is generated (see also Chapter 3, this volume).

Keywords

  • Migration Inhibitory Factor
  • Mononuclear Phagocyte
  • Bone Marrow Culture
  • Mononuclear Phagocyte System
  • Milky Spot

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4757-9534-9_2
  • Chapter length: 57 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-4757-9534-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abney, E. R., Bartlett, P. P., and Raff, M. C., 1981, Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain, Dev. Biol. 83: 301–310.

    CAS  PubMed  CrossRef  Google Scholar 

  • Adams, D. O., and Hamilton, T. A., 1984, The cell biology of macrophage activation, Annu. Rev. Immunol. 2: 283–318.

    CAS  PubMed  CrossRef  Google Scholar 

  • Adams, D. O., and Hamilton, T. A., 1986, Regulation of macrophage activation at the molecular level, Ann. Inst. Pasteur 137C: 229–234.

    CrossRef  Google Scholar 

  • Adams, D. O., and Hamilton, T. A., 1989, The activated macrophage and granulomatous inflammation, Curr. Top. Pathol. 79: 151–167.

    CAS  PubMed  CrossRef  Google Scholar 

  • Adams, L. B., Hibbs, J. B., Jr., Taintor, R. R., and Krahenbuhl, J. L., 1990, Microbiostatic effect of murine activated macrophages for Toxoplasma gondii. Role of synthesis of inorganic nitrogen oxides from L-arginine, J. Immunol. 144: 2725–2729.

    CAS  PubMed  Google Scholar 

  • Akiyama, Y., Miller, P. J., Thurman, G. B., Neubauer, R. H., Oliver, C., Favilla, T., Beman, J. A., Oldham, R. K., and Stevenson, H. C., 1983, Characterization of a human blood monocyte subset with low peroxidase activity, J. Clin. Invest. 72: 1093–1105.

    CAS  PubMed  CrossRef  Google Scholar 

  • Akiyama, Y., Stevenson, G. W., Schlick, E., Matsushima, K., Miller, P. J., and Stevenson, H. C., 1985, Differential ability of human blood monocyte subsets to release various cytokines, J. Leukocyte Biol. 37: 519–530.

    CAS  PubMed  Google Scholar 

  • Albina, J. E., Abate, J. A., and Henry, W. L., 1991, Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation. Role of IFN-y in the induction of the nitric oxide-synthesizing pathway. J. Immunol. 147: 144–148.

    CAS  PubMed  Google Scholar 

  • Allaerts, W., Carmeliet, P., and Denef, C., 1990, New perspectives in the function of pituitary folliculostellate cells, Mol. Cell. Endocrinol. 71: 73–81.

    CAS  PubMed  CrossRef  Google Scholar 

  • Allison, A. C., 1978, Mechanisms by which activated macrophages inhibit lymphocyte responses, Immunol. Rev. 40: 3–27.

    CAS  PubMed  CrossRef  Google Scholar 

  • Al-Ramadi, B. K., Brodkin, M. A., Mosser, D. M., and Eisenstein, T. K., 1991a, Immunosuppression induced by attenuated Salmonella. Evidence for mediation by macrophage precursors, J. Immunol. 146: 2737–2746.

    CAS  PubMed  Google Scholar 

  • Al-Ramadi, B. K., Chen, Y.-W., Meissler, J. J., and Eisenstein, T. K., 1991b, Immunosuppression induced by attenuated Salmonella. Reversal by IL-4, J. Immunol. 147: 1954–1961.

    CAS  PubMed  Google Scholar 

  • Alterman, L. A., Crispe, I. N., and Kinnon, C., 1990, Characterization of the murine heat-stable antigen: An hematolymphoid differentiation antigen defined by the J1 l d, M1/69 and B2A2 antibodies, Eur. J. Immunol. 20: 1597–1602.

    CAS  PubMed  CrossRef  Google Scholar 

  • Andreesen, R., Bross, K. J., Osterholz, J., and Emmrich, F., 1986, Human macrophage maturation and heterogeneity: Analysis with a newly generated set of monoclonal antibodies to differentiation antigens, Blood 67: 1257–1264.

    CAS  PubMed  Google Scholar 

  • Andreesen, R., Brugger, W., Scheibenbogen, C., Kreutz, M., Leser, H.-G., Rehm, A., and Löhr, G. W., 1990, Surface phenotype analysis of human monocyte to macrophage maturation, J. Leukocyte Biol. 47: 490–497.

    CAS  PubMed  Google Scholar 

  • Aschoff, L., 1924, Das reticulo-endotheliale system, Ergebn. Inn. Med. Kinderheilk. 26:1–118. Austyn, J. M., 1987, Lymphoid dendritic cells, Immunology 62: 161–170.

    Google Scholar 

  • Austyn, J. M., and Gordon, S., 1981, F4/80, a monoclonal antibody directed specifically against the mouse macrophage, Eur. J. Immunol. 11: 805–815.

    CAS  PubMed  CrossRef  Google Scholar 

  • Babcock, G. F., Amoscato, A. A., and Nishioka, K., 1983, Effect of tuftsin on the migration, chemotaxis, and differentiation of macrophages and granulocytes, Ann. N. Y. Acad. Sci. 419: 64–74.

    CAS  PubMed  CrossRef  Google Scholar 

  • Baccarini, M., Bistoni, F., and Lohmann-Matthes, M.-L., 1985, In vitro natural cell-mediated cytotoxicity against Candida albicans: Macrophage precursors as effector cells, J. Immunol. 134: 2658–2665.

    CAS  Google Scholar 

  • Baccarini, M., Kiderlen, A. F., Decker, T., and Lohmann-Matthes, M.-L., 1986, Functional heterogeneity of murine macrophage precursor cells from spleen and bone marrow, Cell. Immunol. 101: 339–350.

    CAS  PubMed  CrossRef  Google Scholar 

  • Baccarini, M., Li, H., Decker, T., and Lohmann-Matthes, M.-L., 1988, Macrophage precursors as natural killer cells against tumor cells and microorganisms, Nat. Immun. Cell. Growth Regul. 7: 316–327.

    CAS  PubMed  Google Scholar 

  • Bahr, G. M., and Chedid, L., 1986, Immunological activities of muramyl peptides, Fed. Proc. 45: 2541–2544.

    CAS  PubMed  Google Scholar 

  • Bechard, D. E., Fisher, B. J., Kessler, F. K., Carchman, R. A., and Fowler, A. A., 1988, Macrophage spreading disparity: alveolar vs. peritoneal, J. Clin. Lab. Immunol. 26: 67–71.

    CAS  PubMed  Google Scholar 

  • Beck, G., and Habicht, G. S., 1991, Primitive cytokines: Harbingers of vertebrate defense, Immunol. Today 12: 180–183.

    CAS  PubMed  CrossRef  Google Scholar 

  • Beelen, R. H. J., Fluitsma, D. M., and Hoefsmit, E. C. M., 1980, The cellular composition of omentum milky spots and the ultrastructure of milky spot macrophages and reticulum cells, J. Reticuloendothel. Soc. 28: 585–599.

    CAS  PubMed  Google Scholar 

  • Benoist, C., and Mathis, D., 1990, Regulation of major histocompatibility complex class-II genes: X, Y and other letters of the alphabet, Annu. Rev. Immunol. 8: 681–715.

    CAS  PubMed  CrossRef  Google Scholar 

  • Berman, J. W., and Basch, R. S., 1985, Thy-1 antigen expression by murine hematopoietic precursor cells, Exp. Hematol. 13: 1152–1156.

    CAS  PubMed  Google Scholar 

  • Bernard, J., 1991, The erythroblastic island: Past and future, Blood Cells 17: 5–14.

    CAS  PubMed  Google Scholar 

  • Bernard, A., Boumsell, L., Dausset, J., Milstein, C., and Schlossman, S. F. (eds.), 1984, Leucocyte Typing. Human Leucocyte Differentiation Antigens Detected by Monoclonal Antibodies, Springer-Verlag, Berlin.

    Google Scholar 

  • Bethke, U., Kniep, B., and Mühlradt, P. F., 1987, Forssman glycolipid, an antigenic marker for a major subpopulation of macrophages from mutine spleen and peripheral lymph nodes, J. Immunol. 138: 4329–4335.

    CAS  PubMed  Google Scholar 

  • Bhattacharya, A., Dorf, M. E., and Springer, T. A., 1981, A shared alloantigenic determinant on la antigens encoded by the I-A and I-E subregions: Evidence for I region gene duplication, J. Immunol. 127: 2488–2495.

    CAS  PubMed  Google Scholar 

  • Blank, K. J., McKernan, L. N., and Murasko, D. M., 1985, Poly I:C or IFN-a/ß treatment inhibits macrophage induced T cell proliferation, J. Interferon Res. 5: 215–221.

    CAS  PubMed  CrossRef  Google Scholar 

  • Bogdan, C., Vodovotz, Y., and Nathan, C., 1991, Macrophage deactivation by interleukin 10, J. Exp. Med. 174: 1549–1555.

    CAS  PubMed  CrossRef  Google Scholar 

  • Boog, C. J. P., Neefjes, J. J., Boes, J., Ploegh, H. L., and Melief, C. J. M., 1989, Specific immune responses restored by alteration in carbohydrate chains of surface molecules on antigen-presenting cells, Eur. J. Immunol. 19: 537–542.

    CAS  PubMed  CrossRef  Google Scholar 

  • Boyd, A. W., and Schrader, J. W., 1982, Derivation of macrophage-like lines from the pre-B lymphoma ABLS 8.1 using 5-azacytidine, Nature (London) 297: 691–693.

    CAS  Google Scholar 

  • Breel, M., Mebius, R. E., and Kraal, G., 1987, Dendritic cells of the mouse recognized by two monoclonal antibodies, Eur. J. Immunol. 17: 1555–1559.

    CAS  PubMed  CrossRef  Google Scholar 

  • Bretscher, P., 1992, The two-signal model of lymphocyte activation twenty-one years later, Immunol. Today 13: 74–76.

    CAS  PubMed  CrossRef  Google Scholar 

  • Brown, E. J., 1986, The interactions of connective tissue proteins with phagocytic cells, J. Leukocyte Biol. 39: 579–591.

    CAS  PubMed  Google Scholar 

  • Brown, E. J., 1991, Complement receptors and phagocytosis, Curr. Opin. Immunol. 3: 76–82.

    CAS  PubMed  CrossRef  Google Scholar 

  • Broxmeyer, H. E., Sherry, B., Lu, L., Cooper, S., Carow, C., Wolpe, S. D., and Cerami, A., 1989, Myelopoietic enhancing effects of murine macrophage inflammatory proteins 1 and 2 on colony formation in vitro by mutine and human bone marrow granulocyte/macrophage progenitor cells, J. Exp. Med. 170: 1583–1594.

    CAS  PubMed  CrossRef  Google Scholar 

  • Buckley, P. J., Smith, M. R., Braverman, M. F., and Dickson, S. A., 1987, Human spleen contains phenotypic subsets of macrophages and dendritic cells that occupy discrete microanatomic locations, Am. J. Pathol. 128: 505–520.

    CAS  PubMed  Google Scholar 

  • Burnet, F. M., 1970, Immunological Surveillance, Pergamon Press, Oxford.

    Google Scholar 

  • Bursuker, I., and Goldman, R., 1982, Distinct bone marrow precursors for mononuclear phagocytes expressing high and low 5’-nucleotidase activity, J. Cell. Physiol. 112: 237–242.

    CAS  PubMed  CrossRef  Google Scholar 

  • Bursuker, I., and Goldman, R., 1983, On the origin of macrophage heterogeneity: A hypothesis, J. Reticuloendothel. Soc. 33: 207–220.

    CAS  PubMed  Google Scholar 

  • Bursuker, I., Rhodes, J. M., and Goldman, R., 1982, ß-Galactosidase—an indicator of the maturational stage of mouse and human mononuclear phagocytes, J. Cell. Physiol. 112: 385–390.

    CAS  PubMed  CrossRef  Google Scholar 

  • Callard, R. E., 1989, Cytokine regulation of B-cell growth and differentiation, Br. Med. Bull. 45: 371–388.

    CAS  PubMed  Google Scholar 

  • Campbell, P. A., Czuprynski, C. J., and Cook, J. L., 1984, Differential expression of macrophage effector functions: Bactericidal versus tumoricidal activities, J. Leukocyte Biot. 36: 293–306.

    CAS  Google Scholar 

  • Campbell, P. A., Canono, B. P., and Cook, J. L., 1988, Mouse macrophages stimulated by recombinant gamma interferon to kill tumor cells are not bactericidal for the facultative intracellular bacterium Listeria monocytogenes, Infect. Immun. 56: 1371–1375.

    CAS  PubMed  Google Scholar 

  • Carlos, T. M., and Harlan, J. M., 1990, Membrane proteins involved in phagocyte adherence to endothelium, Immunol. Rev. 114: 5–28.

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen, J. W., Murphy, T. L., Willingham, M. C., Pastan, I., and August, J. T., 1985, Identification of two lysosomal membrane glycoproteins, J. Cell Biot. 101: 85–95.

    CAS  CrossRef  Google Scholar 

  • Cherayil, B. J., Weiner, S. J., and Pillai, S., 1989, The Mac-2 antigen is a galactose-specific lectin that binds IgE, J. Exp. Med. 170: 1959–1972.

    CAS  PubMed  CrossRef  Google Scholar 

  • Chung, L. P., Keshav, S., and Gordon, S., 1988, Cloning of the human lysozyme eDNA: Inverted Alu repeat in the mRNA and in situ hybridization for macrophages and Paneth cells, Proc. Natl. Acad. Sci. USA 85: 6227–6231.

    CAS  PubMed  CrossRef  Google Scholar 

  • Cianciolo, G. J., 1986, Antiinflammatory proteins associated with human and murine neoplasms, Biochim. Biophys. Acta 865: 69–82.

    CAS  Google Scholar 

  • Cline, M. J., and Moore, M. A. S., 1972, Embryonic origin of the mouse macrophage, Blood 39: 842–849.

    CAS  PubMed  Google Scholar 

  • Cohn, Z. A., 1978, The activation of mononuclear phagocytes: Fact, fancy, and future, J. Immunol. 121: 813–816.

    CAS  PubMed  Google Scholar 

  • Cohn, Z. A., and Steinman, R. M., 1982, Phagocytosis and fluid-phase pinocytosis, Ciba Found. Svmp. 92: 15–34.

    CAS  Google Scholar 

  • Cohn, Z. A., Hirsch, J. G., and Fedorko, M. E., 1966, The in vitro differentiation of mononuclear phagocytes. IV. The ultrastructure of macrophage differentiation in the peritoneal cavity and in culture, J. Exp. Med. 123: 747–756.

    CAS  PubMed  CrossRef  Google Scholar 

  • Collins, S. J., 1987, The HL-60 promyelocytic leukemia cell line: Proliferation, differentiation, and cellular oncogene expression, Blood 70: 1233–1244.

    CAS  PubMed  Google Scholar 

  • Colombatti, A., Hughes, E. N., Taylor, B. A., and August, J. T., 1982, Gene for a major cell surface glycoprotein of mouse macrophages and other phagocytic cells is on chromosome 2, Proc. Natl. Acad. Sci. USA 79: 1926–1929.

    CAS  PubMed  CrossRef  Google Scholar 

  • Coonrod, J. D., and Yoneda, K., 1983, Effect of rat alveolar lining material on macrophage receptors, J. Immunol. 130: 2589–2596.

    CAS  PubMed  Google Scholar 

  • Cooper, E. L., 1976, Evolution of blood cells, Ann. Immunol. 127: 817–825.

    CAS  Google Scholar 

  • Cox, G. W., Mathieson, B. J., Giardina, S. L., and Varesio, L., 1990, Characterization of IL-2 receptor expression and function on murine macrophages, J. Immunol. 145: 1719–1726.

    CAS  PubMed  Google Scholar 

  • Crocker, P. R., and Gordon, S., 1985, Isolation and characterization of resident stromal macrophages and hematopoietic cell clusters from mouse bone marrow, J. Exp. Med. 162: 993–1014.

    CAS  PubMed  CrossRef  Google Scholar 

  • Crocker, P. R., and Gordon, S., 1986, Properties and distribution of a lectin-like hemagglutinin differentially expressed by murine stromal tissue macrophages, J. Exp. Med. 164: 1862–1875.

    CAS  PubMed  CrossRef  Google Scholar 

  • Crocker, P. R., and Gordon, S., 1989, Mouse macrophage hemagglutinin (sheep erythrocyte receptor) with specificity for sialylated glycoconjugates characterized by a monoclonal antibody, J. Exp. Med. 169: 1333–1346.

    CAS  PubMed  CrossRef  Google Scholar 

  • Crocker, P. R., Morris, L., and Gordon, S., 1988, Novel cell surface adhesion receptors involved in interactions between stromal macrophages and haematopoietic cells, J. Cell Sci. Suppl. 9: 185–206.

    CAS  PubMed  Google Scholar 

  • Crocker, P. R., Werb, Z., Gordon, S., and Bainton, D. F., 1990, Ultrastructural localization of a macrophage-restricted sialic acid binding hemagglutinin, SER, in macrophage-hematopoietic cell clusters, Blood 76: 1131–1138.

    CAS  PubMed  Google Scholar 

  • Crocker, P. R., Kelm, S., Dubois, C., Martin, B., McWilliam, A. S., Shotton, D. M., Paulson, J. C., and Gordon, S., 1991, Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages, EMBO J. 10: 1661–1669.

    CAS  PubMed  Google Scholar 

  • Cross, M., Mangelsdorf, I., Wedel, A., and Renkawitz, R., 1988, Mouse lysozyme M gene: Isolation, characterization, and expression studies, Proc. Natl. Acad. Sci. USA 85: 6232–6236.

    CAS  PubMed  CrossRef  Google Scholar 

  • Cutler, J. E., Brawner, D. L., Hazen, K. C., and Jutila, M. A., 1990, Characteristics of Candida albicans adherence to mouse tissues, Infect. Immun. 58: 1902–1908.

    CAS  PubMed  Google Scholar 

  • Daems, W. T., and De Bakker, J. M., 1982, Do resident macrophages proliferate? Immunobiology 161: 204–211.

    CAS  PubMed  CrossRef  Google Scholar 

  • Davidson, W. F., Pierce, J. H., Rudikoff, S., and Morse, H. C., III, 1988, Relationships between B cell and myeloid differentiation. Studies with a B lymphocyte progenitor line, HAFTL-1, J. Exp. Med. 168: 389–407.

    CAS  PubMed  CrossRef  Google Scholar 

  • Davies, P., and Allison, A. C., 1976, Secretion of macrophage enzymes in relation to the pathogenesis of chronic inflammation, in Immunobiology of the Macrophage, ( D. S. Nelson, ed.), pp. 427–461, Academic Press, New York.

    Google Scholar 

  • Davies, P., and Maclntyre, D. E., 1992, Prostaglandins and inflammation, in Inflammation: Basic Principles and Clinical Correlates, Second Edition ( J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds.), pp. 123–138, Raven Press, New York.

    Google Scholar 

  • Davies, R., and Erdogdu, G., 1989, Secretion of fibronectin by mineral dust-derived alveolar macrophages and activated peritoneal macrophages, Exp. Lung Res. 15: 285–297.

    CAS  PubMed  CrossRef  Google Scholar 

  • Davignon, D., Martz, E., Reynolds, T., Kürzinger, K., and Springer, T. A., 1981, Lymphocyte function-associated antigen 1 (LFA-1): A surface antigen distinct from Lyt-2,3 that participates in T lymphocyte-mediated killing, Proc. Natl. Acad. Sci. USA 78: 4535–4539.

    CAS  PubMed  CrossRef  Google Scholar 

  • De Both, N. J., Hagemeijer, A., Rhijnsburger, E. H., Vermey, M., Van’t Hull, E., and Smit, E. M. E., 1981, DMSO-induced terminal differentiation and trisomy 15 in myeloid cell line transformed by the Rauscher murine leukemia virus, Cell Differ. 10: 13–21.

    PubMed  CrossRef  Google Scholar 

  • Decker, T., Baccarini, M., and Lohmann-Matthes, M.-L., 1986, Liver-associated macrophage precursors as natural cytotoxic effectors against Candida albicans and Yac-1 cells, Eur. J. Immunol. 16: 693–699.

    CAS  PubMed  CrossRef  Google Scholar 

  • Deimann, W., and Fahimi, H. D., 1978, Peroxidase cytochemistry and ultrastructure of resident macrophages in fetal rat liver. A developmental study, Dey. Biol. 66: 43–56.

    CAS  CrossRef  Google Scholar 

  • Deiss, A., 1983, Iron metabolism in reticuloendothelial cells, Semin. Hematol. 20: 81–90.

    CAS  PubMed  Google Scholar 

  • De Jong, J. P., Nikkels, P. G. J., Piersma, A. H., and Ploemacher, R. E., 1987, Erythropoiesis and macrophage subsets in medullary and extramedullary sites, in Molecular and Cellular Aspects ofErythropoietin and Erythropoiesis (I. N. Rich, ed.), pp. 237–258, NATO ASI Series Vol. H8, Springer-Verlag, Berlin.

    Google Scholar 

  • De Jong, J. P., Voerman, J. S. A., Van der Sluijs-Gelling, A. J., Willemsen, R., and Ploemacher, R. E., 1990a, A monoclonal antibody (ER-HR3) against murine macrophages. I. Ontogeny, distribution, and enzyme histochemical characterization of ER-HR3-positive cells, in Localization and phenotypical characterization of murine macrophages (J. P. De Jong, Thesis), pp. 117–132, Erasmus University, Rotterdam, The Netherlands.

    Google Scholar 

  • De Jong, J. P., Leenen, P. J. M., Voerman, J. S. A., Van der Sluijs-Gelling, A. J., and Ploemacher, R. E., 1990b, A monoclonal antibody (ER-HR3) against murine macrophages. II. Purification and functional aspects of the ER-HR3 antigen, in Localization and phenotypical characterization of murine macrophages (J. P. De Jong, Thesis), pp. 133–149, Erasmus University, Rotterdam, The Netherlands.

    Google Scholar 

  • De Jong, J. P., Leenen, P. J. M., Melis, M., Voerman, J. S. A., and Van Ewijk, W., 1990c, Immunophenotypical characterization of macrophage and dendrocyte subpopulations in the murine spleen, in Localization and phenotypical characterization of murine macrophages (J. P. De Jong, Thesis), pp. 73–84, Erasmus University, Rotterdam, The Netherlands.

    Google Scholar 

  • Detmers, P. A., and Wright, S. D., 1988, Adhesion-promoting receptors on leukocytes, Curr. Opin. Immunol. 1: 10–15.

    CAS  PubMed  CrossRef  Google Scholar 

  • De Waal Malefyt, R., Abrams, J., Bennett, B., Figdor, C. G., and De Vries, J. E., 1991, Interleukin 10 (IL-10) inhibits cytokine synthesis by human’monocytes: An autoregulatory role of IL-10 produced by monocytes, J. Exp. Med. 174: 1209–1220.

    CrossRef  Google Scholar 

  • Dexter, T. M., Wright, E. G., Krizsa, F., and Lajtha, L. G., 1977, Regulation of haemopoietic stem cell proliferation in long term bone marrow cultures, Biomedicine 27: 344–349.

    CAS  PubMed  Google Scholar 

  • Dialynas, D. P., Wilde, D. B., Marrack, P., Pierres, A., Wall, K. A., Havran, W., Otten, G., Loken, M. R., Pierres, M., Kappler, J., and Fitch, F. W., 1983, Characterization of the murine antigenic determinant, designated L3T4a, recognized by monoclonal antibody GK1.5: Expression of L3T4a by functional T cell clones appears to correlate primarily with class II MHC antigen reactivity, Immunol. Rev. 74: 29–56.

    CAS  PubMed  CrossRef  Google Scholar 

  • Dijkstra, C. D., Van Vliet, E., DSpp, E. A., Van der Lely, A. A., and Kraal, G., 1985, Marginal zone macrophages identified by a monoclonal antibody: Characterization of immuno-and enzymehistochemical properties and functional capacities, Immunology 55: 23–30.

    CAS  PubMed  Google Scholar 

  • Dorshkind, K., 1990, Regulation of hemopoiesis by bone marrow stromal cells and their products, Annu. Rev. Immunol. 8: 111–137.

    CAS  PubMed  CrossRef  Google Scholar 

  • Dougherty, G. J., and McBride, W. H., 1984, Macrophage heterogeneity, J Clin. Lab. Immunol. 14: 1–11.

    CAS  PubMed  Google Scholar 

  • Douvas, G. S., Looker, D. L., Vatter, A. E., and Crowle, A. J., 1985, Gamma interferon activates human macrophages to become tumoricidal and leishmanicidal but enhances replication of macrophageassociated mycobacteria, Infect. Immun. 50: 1–8.

    CAS  PubMed  Google Scholar 

  • Dransfield, I., Corcoran, D., Partridge, L. J., Hogg, N., and Burton, D. R., 1988, Comparison of human monocytes isolated by elutriation and adherence suggests that heterogeneity may reflect a continuum of maturation/activation states, Immunology 63: 491–498.

    CAS  PubMed  Google Scholar 

  • Drevets, D. A., and Campbell, P. A., 1991, Roles of complement and complement receptor type 3 in phagocytosis of Listeria monocytogenes by inflammatory mouse peritoneal macrophages, Infect. Immun. 59: 2645–2652.

    CAS  PubMed  Google Scholar 

  • Dumont, F. J., Coker, L. Z., Habbersett, R. C., and Treffinger, J. A., 1985, Xenogeneic monoclonal antibody to an Ly-6-linked murine cell surface antigen: Differential reactivity with T cell subpopulations and bone marrow cells. J. Immunol. 134: 2357–2365.

    CAS  PubMed  Google Scholar 

  • Duvall, E., Wyllie, A. H., and Morris, R. G., 1985, Macrophage recognition of cells undergoing programmed cell death (apoptosis), Immunology 56: 351–358.

    CAS  PubMed  Google Scholar 

  • El Rouby, S., Praz, F., Halbwachs-Mecarelli, L., and Papiernik, M., 1985, Thymic reticulum in mice. IV. The rosette formation between phagocytic cells of the thymic reticulum and cortical type thymocytes is mediated by complement receptor type three, J. Immunol. 134: 3625–3631.

    PubMed  Google Scholar 

  • Eppell, B. A., Newell, A. M., and Brown, E. J., 1989, Adenosine receptors are expressed during differentiation of monocytes to macrophages in vitro. Implications for regulation of phagocytosis, J. Immunol. 143: 4141–4145.

    CAS  PubMed  Google Scholar 

  • Esa, A. H., Noga, S. J., Donnenberg, A. D., and Hess, A. D., 1986, Immunological heterogeneity of human monocyte subsets prepared by counterflow centrifugation elutriation, Immunology 59: 95–99.

    CAS  PubMed  Google Scholar 

  • Fadok, V. A., Voelker, D. R., Campbell, P. A., Cohen, J. J., Bratton, D. L., and Henson, P. M., 1992a, Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages, J. Immunol. 148: 2207–2216.

    CAS  PubMed  Google Scholar 

  • Fadok, V. A., Savill, J. S., Haslett, C. Bratton, D. L., Doherty, D. E., Campbell, P. A., and Henson, P. M., 1992b, Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells, J. Immunol. 149: 4029–4035.

    CAS  PubMed  Google Scholar 

  • Falkenberg, U., Leenen, P. J. M., and Falkenberg, F. W., 1989, Characterization of mouse macrophage differentiation antigens by monoclonal antibodies, Cell. Immunol. 124: 77–94.

    CAS  PubMed  CrossRef  Google Scholar 

  • Figdor, C. G., Bont, W. S., Touw, I., De Roos, J., Roosnek, E. E., and De Vries, J. E., 1982, Isolation of functionally different human monocytes by counterflow centrifugal elutriation, Blood 60: 46–53.

    CAS  PubMed  Google Scholar 

  • Finch, C. A., and Huebers, H., 1982, Perspectives in iron metabolism, N. Engl. J. Med. 306: 1520–1528.

    CAS  PubMed  CrossRef  Google Scholar 

  • Flesch, I. E. A., and Kaufmann, S. H. E., 1991, Mechanisms involved in mycobacterial growth inhibition by gamma interferon-activated bone marrow macrophages: Role of reactive nitrogen intermediates, Infect. Immun. 59: 3213–3218.

    CAS  PubMed  Google Scholar 

  • Fogelman, A. M., Van Lenten, B. J., Warden, C., Haberland, M. E., and Edwards, P. A., 1988, Macrophage lipoprotein receptors, J. Cell Sci. Suppl. 9: 135–149.

    CAS  PubMed  Google Scholar 

  • Fortier, A. H., Polsinelli, T., Green, S. J., and Nacy, C. A., 1992, Activation of macrophages for destruction of Francisella tularensis: identification of cytokines, effector cells, and effector molecules, Infect. Immun. 60: 817–825.

    CAS  PubMed  Google Scholar 

  • Fossum, S., 1989, The life history of dendritic leukocytes (DL), Curr. Top. Pathol. 79: 101–124.

    CAS  PubMed  CrossRef  Google Scholar 

  • Fox, B. A., and Petty, H. R., 1984, Characterization of a monoclonal antibody defining a macrophage activation-specific cell surface antigen, Mol. Immunol. 21: 681–684.

    CAS  PubMed  CrossRef  Google Scholar 

  • Fredrickson, G. G., and Basch, R. S., 1989, L3T4 antigen expression by hemopoietic precursor cells, J. Exp. Med. 169: 1473–1478.

    CrossRef  Google Scholar 

  • Gallatin, W. M., Weissman, I. L., and Butcher, E. C., 1983, A cell-surface molecule involved in organ-specific homing of lymphocytes, Nature (London) 304: 30–34.

    CAS  CrossRef  Google Scholar 

  • Ganter, U., Bauer, J., Majello, B., Gerok, W., and Ciliberto, G., 1989, Characterization of mononuclear-phagocyte terminal maturation by mRNA phenotyping using a set of cloned cDNA probes, Eur. J. Biochem. 185: 291–296.

    CAS  PubMed  CrossRef  Google Scholar 

  • Gauldie, J., Richards, C., and Lamontagne, L., 1983, Fc receptors for IgA and other immunoglobulins on resident and activated alveolar macrophages, Mol. Immunol. 20: 1029–1037.

    CAS  PubMed  CrossRef  Google Scholar 

  • Geppert, T. D., Davis, L. S., Gur, H., Wacholtz, M. C., and Lipsky, P. E., 1990, Accessory cell signals involved in T-cell activation, Immunol. Rev. 117: 5–66.

    CAS  PubMed  CrossRef  Google Scholar 

  • Gieseler, R. K. H., Röber, R.-A., Kuhn, R., Weber, K., Osborn, M., and Peters, J. H., 1991, Dendritic accessory cells derived from rat bone marrow precursors under chemically defined conditions in vitro belong to the myeloid lineage, Eur. J. Cell Biol. 54: 171–181.

    CAS  PubMed  Google Scholar 

  • Ginsel, L. A., Rijfkogel, L. P., and Daems, W. Th., 1985, A dual origin of macrophages? Review and hypothesis, in Macrophage Biology ( S. Reichard and M. Kojima, eds.), pp. 621–649, Alan R. Liss, New York.

    Google Scholar 

  • Gisler, R. H., Schlienger, C., Söderberg, A., Ledermann, F., and Lambris, J. D., 1988, Functional maturation of murine B lymphocyte precursors. III. Soluble factors involved in the regulation of growth and differentiation, Mol. Immunol. 25: 1113–1127.

    CAS  PubMed  CrossRef  Google Scholar 

  • Gordon, S., 1986, Biology of the macrophage, J. Cell Sci. Suppl. 4: 267–286.

    CAS  PubMed  Google Scholar 

  • Gordon, S., and Hirsch, S., 1982, Differentiation antigens and macrophage heterogeneity, Adv. Exp. Med. Biol. 155: 391–400.

    CAS  PubMed  CrossRef  Google Scholar 

  • Gordon, S., Todd, J., and Cohn, Z. A., 1974, In vitro synthesis and secretion of lysozyme by mononuclear phagocytes, J. Exp. Med. 139: 1228–1248.

    CAS  PubMed  CrossRef  Google Scholar 

  • Gordon, S., Perry, V. H., Rabinowitz, S., Chung, L.-P., and Rosen, H., 1988a, Plasma membrane receptors of the mononuclear phagocyte system, J. Cell Sci. Suppl. 9: 1–26.

    CAS  PubMed  Google Scholar 

  • Gordon, S., Keshav, S., and Chung, L. P., 1988b, Mononuclear phagocytes: Tissue distribution and functional heterogeneity, Curr. Opin. Immunol. 1: 26–35.

    CAS  PubMed  CrossRef  Google Scholar 

  • Gordon, S., Fraser, I., Nath, D., Hughes, D., and Clarke, S., 1992, Macrophages in tissues and in vitro, Curr. Opin. Immunol. 4: 25–32.

    CAS  PubMed  CrossRef  Google Scholar 

  • Gospodarowicz, D., Cheng, J., Ge-Ming, L., Baird, A., and Böhlent, P., 1984, Isolation of brain fibroblast growth factor by heparin-sepharose affinity chromatography: Identity with pituitary fibroblast growth factor, Proc. Natl. Acad. Sci. USA 81: 6963–6967.

    CAS  PubMed  CrossRef  Google Scholar 

  • Goud, T. J. L. M., and Van Furth, R., 1975, Proliferative characteristics of monoblasts grown in vitro, J. Exp. Med. 142: 1200–1217.

    CAS  PubMed  CrossRef  Google Scholar 

  • Goud, T. J. L. M., Schotte, C., and Van Furth, R., 1975, Identification and characterization of the mono-blast in mononuclear phagocyte colonies grown in vitro, J. Exp. Med. 142: 1180–1199.

    CAS  PubMed  CrossRef  Google Scholar 

  • Green, S. J., Meltzer, M. S., Hibbs, J. B., Jr., and Nacy, C. A., 1990, Activated macrophages destroy intracellular Leishmania major amastigotes by an L-argine-dependent killing mechanism, J. Immunol. 144: 278–283.

    CAS  PubMed  Google Scholar 

  • Greenberger, J. S., 1991, The hematopoietic microenvironment, Crit. Rev. OncoL Hematol. 11: 65–84.

    CAS  PubMed  CrossRef  Google Scholar 

  • Griffin, F. M., Griffin, J. A., Leider, J. E., and Silverstein, S. C., 1975, Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane, J. Exp. Med. 142: 1263–1282.

    PubMed  CrossRef  Google Scholar 

  • Griffin, F. M., Griffin, J. A., and Silverstein, S. C., 1976, Studies on the mechanism of phagocytosis. II. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes, J. Exp. Med. 144: 788–809.

    PubMed  CrossRef  Google Scholar 

  • Haidaris, C. G., and Bonventre, P. F., 1981, Elimination of Leishmania donovani amastigotes by activated macrophages, Infect. Immun. 33: 918–926.

    CAS  PubMed  Google Scholar 

  • Hampton, R. Y., Golenbock, D. T., Penman, M., Krieger, M., and Raetz, C. R. H., 1991, Recognition and plasma clearance of endotoxin by scavenger receptors, Nature (London) 352: 342–344.

    CAS  Google Scholar 

  • Hara, J., Kawa-Ha, K., Yumura-Yagi, K., Kurahashi, H., Tawa, A., Ishihara, S., Inoue, M., Murayama, N., and Okada, S., 1991, In vivo and in vitro expression of myeloid antigens on B-lineage acute lymphoblastic leukemia cells, Leukemia 5: 19–25.

    CAS  Google Scholar 

  • Hardy, R. R., and Hayakawa, K., 1991, A developmental switch in B lymphopoiesis, Proc. Natl. Acad. Sci. USA 88: 11550–11554.

    CAS  PubMed  CrossRef  Google Scholar 

  • Havell, E. A., 1987, Production of tumor necrosis factor during murine listeriosis, J. Immunol. 139: 4225–4231.

    CAS  PubMed  Google Scholar 

  • Havran, W. L., and Allison, J. P., 1990, Origin of Thy-1+ dendritic epidermal cells of adult mice from fetal thymic precursors, Nature (London) 344: 68–70.

    CAS  Google Scholar 

  • Hestdal, K., Ruscetti, F. W., Ihle, J. N., Jacobsen, S. E. W., Dubois, C. M., Kopp, W. C., Longo, D. L., and Keller, J. R., 1991, Characterization and regulation of RB6–8C5 antigen expression on murine bone marrow cells, J. Immunol. 147: 22–28.

    CAS  PubMed  Google Scholar 

  • Heyworth, C. M., Valiance, S. J., Whetton, A. D., and Dexter, T. M., 1990, The biochemistry and biology of the myeloid haemopoietic cell growth factors, J Cell Sci. 13: 57–74.

    CAS  Google Scholar 

  • Hibbs, J. B., Jr., Taintor, R. R., Chapman, H. A., Jr., and Weinberg, J. B., 1977, Macrophage tumor killing: Influence of the local environment, Science 197: 279–282.

    PubMed  CrossRef  Google Scholar 

  • Hirsch, S., and Gordon, S., 1983, Polymorphic expression of a neutrophil differentiation antigen revealed by monoclonal antibody 7/4, Immunogenetics 18: 229–239.

    CAS  PubMed  CrossRef  Google Scholar 

  • Hirsch, S., Austyn, J. M., and Gordon, S., 1981, Expression of the macrophage-specific antigen F4/80 during differentiation of mouse bone marrow cells in culture, J. Exp. Med. 154: 713–725.

    CAS  PubMed  CrossRef  Google Scholar 

  • Ho, M.-K., and Springer, T. A., 1982, Mac-2, a novel 32,000 M r mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies, J. Immunol. 128: 1221–1228.

    CAS  PubMed  Google Scholar 

  • Ho, M.-K., and Springer, T. A., 1983, Tissue distribution, structural characterization, and biosynthesis of Mac-3, a macrophage surface glycoprotein exhibiting molecular weight heterogeneity. J. Biol. Chem. 258: 636–642.

    CAS  PubMed  Google Scholar 

  • Hoefsmit, E. C. M., Duijvestijn, A. M., and Kamperdijk, E. W. A., 1982, Relation between Langerhans cells, veiled cells, and interdigitating cells, Immunobiology 161: 255–265.

    CAS  PubMed  CrossRef  Google Scholar 

  • Holmes, K. L., Langdon, W. Y., Fredrickson, T. N., Coffman, R. L., Hoffman, P. M., Hartley, J. W., and Morse, H. C., III, 1986, Analysis of neoplasms induced by Cas-Br-M MuLV tumor extracts, J. Immunol. 137: 679–688.

    CAS  PubMed  Google Scholar 

  • Holt, P. G., Schon-Hegrad, M. A., and Oliver, J., 1988, MHC class II antigen-bearing dendritic cells in pulmonary tissues of the rat. Regulation of antigen presentation activity by endogenous macrophage populations, J. Exp. Med. 167: 262–274.

    CAS  PubMed  CrossRef  Google Scholar 

  • Horwitz, M. A., 1984, Phagocytosis of the Legionnaires’ disease bacterium (Legionella pneurnophila) occurs by a novel mechanism: Engulfment within a pseudopod coil, Cell 36: 27–33.

    CAS  PubMed  CrossRef  Google Scholar 

  • Hughes, T. K., Smith, E. M., Chin, R., Cadet, P., Sinisterra, J., Leung, M. K., Shipp, M. A., Scharrer, B., and Stefano, G. B., 1990, Interaction of immunoactive monokines (interleukin 1 and tumor necrosis factor) in the bivalve mollusc Mytilus edulis, Proc. Natl. Acad. Sci. USA 87: 4426–4429.

    CAS  PubMed  CrossRef  Google Scholar 

  • Hughes, T. K., Smith, E. M., Barnett, J. A., Charles, R., and Stefano, G. B., 1991, LPS stimulated inverte- brate hemocytes: A role for immunoreactive TNF and IL-1, Dev. Comp. Immunol. 15: 117–122.

    PubMed  CrossRef  Google Scholar 

  • Hume, D. A., Robinson, A. P., MacPherson, G. G., and Gordon, S., 1983, The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Relationship between macrophages, Langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs, J. Exp. Med. 158: 1522–1536.

    CAS  PubMed  CrossRef  Google Scholar 

  • Hunkapiller, T., and Hood, L., 1989, Diversity of the immunoglobulin gene superfamily, Adv. Immunol. 44: 1–63.

    CAS  PubMed  CrossRef  Google Scholar 

  • Ikuta, K., Kina, T., MacNeil, I., Uchida, N., Peault, B., Chien, Y.-H., and Weissman, I. L., 1990, A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells, Cell 62: 863–874.

    CAS  PubMed  CrossRef  Google Scholar 

  • Inamura, N., Sone, S., Okubo, A., Singh, S. M., and Ogura, T., 1990, Heterogeneity in responses of human blood monocytes to granulocyte-macrophage colony-stimulating factor, J. Leukocyte Biol. 47: 528–534.

    CAS  PubMed  Google Scholar 

  • Jäättelä, M., 1991, Biologic activities and mechanisms of action of tumor necrosis factor-a/cachectin, Lab. Invest. 64: 724–742.

    PubMed  Google Scholar 

  • Janossy, G., Bofill, M., Poulter, L. W., Rawlings, E., Burford, G. D., Navarrete, C., Ziegler, A., and Kelemen, E., 1986, Separate ontogeny of two macrophage-like accessory cell populations in the human fetus, J. Immunol. 136: 4354–4361.

    CAS  PubMed  Google Scholar 

  • Jenkins, M. K., 1992, The role of cell division in the induction of clonal anergy, Immunol. Today 13: 69–73.

    CAS  PubMed  CrossRef  Google Scholar 

  • Johnson, W. J., Marino, P. A., Schreiber, R. D., and Adams, D. O., 1983, Sequential activation of murine mononuclear phagocytes for tumor cytolysis: Differential expression of markers by macrophages in the several stages of development, J. Immunol. 131: 1038–1043.

    CAS  PubMed  Google Scholar 

  • Johnston, R. B., 1988, Monocytes and macrophages, N. Engl. J. Med. 318: 747–752.

    PubMed  CrossRef  Google Scholar 

  • Jutila, M. A., Kroese, F. G. M., Jutila, K. L., Stall, A. M., Fiering, S., Herzenberg, L. A., Berg, A. L., and Butcher, E. C., 1988, Ly-6C is a monocyte/macrophage and endothelial cell differentiation antigen regulated by interferon-gamma, Eur. J. Immunol. 18: 1819–1826.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kabel, P. J., de Haan-Meulman, M., Voorbij, H. A. M., Kleingeld, M., Knol, E. F., and Drexhage, H. A., 1989, Accessory cells with a morphology and marker pattern of dendritic cells can be obtained from elutriator-purified blood monocyte fractions. An enhancing effect of metrizamide in this differentiation, Immunobiology 179: 395–411.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kagami, M., Funatsu, Y., and Suzuki, T., 1989, Production and characterization of monoclonal antibodies to Fcry2a-binding protein isolated from the detergent lysate of a murine macrophagelike cell line, P388D,, J. Leukocyte Biol. 45: 311–321.

    CAS  PubMed  Google Scholar 

  • Kantor, A. B., 1991, The development and repertoire of B-1 cells (CD5 B cells), Immunol. Today 12: 389–391.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kargi, H. A., Campbell, E. J., and Kuhn, C., III, 1990, Elastase and cathepsin G of human monocytes: Heterogeneity and subcellular localization to peroxidase-positive granules, J. Histochem. Cytochem. 38: 1179–1186.

    CAS  PubMed  CrossRef  Google Scholar 

  • Katoh, S., Tominaga, A., Migita, M., Kudo, A., and Takatsu, K., 1990, Conversion of normal Ly-1positive B-lineage cells into Ly-l-positive macrophages in long-term bone marrow cultures, Dev. Immunol. 1: 113–125.

    CAS  PubMed  CrossRef  Google Scholar 

  • Katz, D. R., 1988, Antigen presentation, antigen-presenting cells and antigen processing, Curr. Opin. Immunol. 1: 213–219.

    CAS  PubMed  CrossRef  Google Scholar 

  • Katz, H. R., Benson, A. C., and Austen, K. F., 1989, Activation and phorbol ester-stimulated phosphorylation of a plasma membrane glycoprotein antigen expressed on mouse IL-3-dependent mast cells and serosal mast cells, J. Immunol. 142: 919–926.

    CAS  PubMed  Google Scholar 

  • Keshav, S., Chung, L.-P., and Gordon, S., 1990, Macrophage products in inflammation, Diagn. Microbiol. Infect. Dis. 13: 439–447.

    CAS  PubMed  CrossRef  Google Scholar 

  • Keshav, S., Chung, L.-P., Milon, G., and Gordon, S., 1991, Lysozyme is an inducible marker of macrophage activation in murine tissues as demonstrated by in situ hybridization, J. Exp. Med. 174: 1049–1058.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kinashi, T., Tashiro, K., Inaba, K., Takeda, T., Palacios, R., and Honjo, T., 1989, An interleukin-4-dependent precursor clone is an intermediate of the differentiation pathway from an interleukin-3-dependent precursor clone into myeloid cells as well as B lymphocytes, Int. Immunol. 1: 11–19.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kincade, P. W., 1990, The lymphopoietic microenvironment in bone marrow, Adv. Cancer Res. 54: 235–272.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kinet, J.-P., 1989, Antibody-cell interactions: Fc receptors, Cell 57: 351–354.

    CAS  PubMed  CrossRef  Google Scholar 

  • King, P. D., and Katz, D. R., 1990, Mechanism of dendritic cell function, Immunol. Today 11: 206–211.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kipps, T. J., 1989, The CD5 B cell, Adv. Immunol. 47: 117–185.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kleist, R., Schmitt, E., Westermann, J., and Mühlradt, P. F., 1990, Modulation of Forssman glycosphingolipid expression by murine macrophages: Coinduction with class II MHC antigen by the lymphokines IL4 and IL6, Immunobiology 180: 405–418.

    CrossRef  Google Scholar 

  • Knapp, W., Dörken, B., Rieber, E. P., Stein, H., Gilks, W. R., Schmidt, R. E., and Von dem Borne, A. E. G. K. (eds.), 1989, Leucocyte Typing IV. White Cell Differentiation Antigens, Oxford University Press, Oxford.

    Google Scholar 

  • Kodama, T., Freeman, M., Rohrer, L., Zabrecky, J., Matsudaira, P., and Krieger, M., 1990, Type I macrophage scavenger receptor contains a-helical and collagen-like coiled coils, Nature (London) 343: 531–535.

    CAS  Google Scholar 

  • Koestler, T. P., Rieman, D., Muirhead, K., Greig, R. G., and Poste, G., 1984, Identification and characterization of a monoclonal antibody to an antigen expressed on activated macrophages, Proc. Natl. Acad. Sci. USA 81: 4505–4509.

    CAS  PubMed  CrossRef  Google Scholar 

  • Koestler, T. P., Badger, A. M., Rieman, D. J., Greig, R., and Poste, G., 1985, Induction by immunomodulatory agents of a macrophage antigen recognized by monoclonal antibody 158.2 and correlation with macrophage function, Cell Immunol. 96: 113–125.

    CAS  PubMed  CrossRef  Google Scholar 

  • Koo, G. C., and Peppard, J. R., 1984, Establishment of monoclonal anti-Nk-1.1 antibody, Hybridoma 3: 301–303.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kosco, M. H., 1991, Antigen presentation to B cells, Curr. Opin. Immunol. 3: 336–339.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kraal, G., and Janse, M., 1986, Marginal metallophilic cells of the mouse spleen identified by a monoclonal antibody, Immunology 58: 665–669.

    CAS  PubMed  Google Scholar 

  • Kraal, G., Bred, M., Janse, M., and Bruin, G., 1986, Langerhans’ cells, veiled cells, and interdigitating cells in the mouse recognized by a monoclonal antibody, J. Exp. Med. 163: 981–997.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kraal, G., Rep, M., and Janse, M., 1987, Macrophages in T and B cell compartments and other tissue macrophages recognized by monoclonal antibody MOMA-2, Scand. J. Immunol. 26: 653–661.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kraal, G., Janse, M., and Claassen, E., 1988, Marginal metallophilic macrophages in the mouse spleen: Effects of neonatal injections of MOMA-1 antibody on the humoral immune response. Immunol. Lett. 17: 139–144.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kraal, G., Ter Hart, H., Meelhuizen, C., Venneker, G., and Claassen, E., 1989, Marginal zone macrophages and their role in the immune response against T-independent type 2 antigens: Modulation of the cells with specific antibody, Eur. J. Immunol. 19: 675–680.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kung, J. T., Sharrow, S. O., Ahmed, A., Habbersett, R., Scher, I., and Paul, W. E., 1982, B lymphocyte subpopulation defined by a rat monoclonal antibody, 14G8, J. Immunol. 128: 2049–2056.

    CAS  PubMed  Google Scholar 

  • Laszlo, D. J., Henson, P. M., Weinstein, L., Remigio, L. K., Sable, C., Noble, P. W., and Riches, D. W. H., 1992, Development of functional diversity in mouse macrophages. Mutual exclusion of two phenotypic states, submitted for publication.

    Google Scholar 

  • LeBlanc, P. A., and Biron, C. A., 1984, Mononuclear phagocyte maturation: A cytotoxic monoclonal antibody reactive with postmonoblast stages, Cell. Immunol. 83: 242–254.

    CAS  PubMed  CrossRef  Google Scholar 

  • LeBlanc, P. A., Katz, H. R., and Russell, S. W., 1980, A discrete population of mononuclear phagocytes detected by monoclonal antibody, Infect. Immun. 29: 520–525.

    CAS  PubMed  Google Scholar 

  • Ledbetter, J. A., and Herzenberg, L. A., 1979, Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens, Immunol. Rev. 47: 63–90.

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee, K.-C., 1980, On the origin and mode of action of functionally distinct macrophage subpopulations, Mol. Cell. Biochem. 30: 39–55.

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee, S.-H., 1991, Phenotypic analysis of human bone marrow macrophages, Blood Cells 17: 45–58.

    CAS  PubMed  Google Scholar 

  • Lee, S.-H., Starkey, P. M., and Gordon, S., 1985, Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80, J. Exp. Med. 161: 475–489.

    CAS  PubMed  CrossRef  Google Scholar 

  • Leenen, P. J. M., 1989, Phenotypical analysis of murine macrophage differentiation, Ph.D. Thesis, Erasmus University, Rotterdam, The Netherlands.

    Google Scholar 

  • Leenen, P. J. M., Willmer, U., Falkenberg, F. W., Jansen, A. M. A. C., and Van Ewijk, W., 1986, Monoclonal antibodies reactive with different stages in mucine macrophage differentiation, in Leukocytes and Host Defense ( J. J. Oppenheim and D. M. Jacobs, eds.), pp. 289–294, Alan R. Liss, New York.

    Google Scholar 

  • Leenen, P. J. M., Kroos, M. J., Melis, M., Slieker, W. A. T., Van Ewijk, W., and Van Eijk, H. G., I990a, Differential inhibition of macrophage proliferation by anti-transferrin receptor antibody ER-MP21: Correlation to macrophage differentiation stage, Exp. Cell Res. 189: 55–63.

    Google Scholar 

  • Leenen, P. J. M., Melis, M., Slieker, W. A. T., and Van Ewijk, W., 1990b, Murine macrophage precursor characterization. II. Monoclonal antibodies against macrophage precursor antigens, Eur. J. Immunol. 20: 27–34.

    CAS  PubMed  CrossRef  Google Scholar 

  • Leenen, P. J. M., Slieker, W. A. T., Melis, M., and Van Ewijk, W., 1990e, Murine macrophage precursor characterization. I. Production, phenotype and differentiation of macrophage precursor hybrids, Eur. J. Immunol. 20: 15–25.

    CAS  PubMed  CrossRef  Google Scholar 

  • Leenen, P. J. M., Melis, M., Slieker, W. A. T., and Van Ewijk, W., 1991, Do ER-MP23+ connective tissue macrophages constitute a separate lineage of macrophage differentiation? J. Leukocyte Biol. 2 (Suppl.): 63–64.

    Google Scholar 

  • Leenen, P. J. M., Melis, M., Kraal, G., Hoogeveen, A. T., and Van Ewijk, W., 1992, Monoclonal antibody ER-BMDM 1 recognizes a macrophage and dendritic cell differentiation antigen with aminopeptidase activity, Eur. J. Immunol. 22: 1567–1572.

    CAS  PubMed  CrossRef  Google Scholar 

  • Leibovich, S. J., Polverini, P. J., Shephard, H. M., Wiseman, D. M., Shively, V., and Nuseir, N., 1987, Macrophage-induced angiogenesis is mediated by tumour necrosis factor-a, Nature 329: 630–632.

    CAS  PubMed  CrossRef  Google Scholar 

  • Lemaire, I., 1991, Selective differences in macrophage populations and monokine production in resolving pulmonary granuloma and fibrosis, Am. J. Pathol. 138: 487–495.

    CAS  PubMed  Google Scholar 

  • Lemischka, I. R., Raulet, D. H., and Mulligan, R. C., 1986, Developmental potential and dynamic behavior of hematopoietic stem cells, Cell 45: 917–927.

    CAS  PubMed  CrossRef  Google Scholar 

  • Lew, D. B., Leslie, C. C., Riches, D. W. H., and Henson, P. M., 1986, Induction of macrophage lysosomal hydrolase synthesis and secretion by 0–1,3-glucan, Cell. Immunol. 100: 340–350.

    PubMed  CrossRef  Google Scholar 

  • Lew, D. B., Leslie, C. C., Henson, P. M., and Riches, D. W. H., 1991, Role of endogenously derived leukotrienes in the regulation of lysosomal enzyme expression in macrophages exposed to ß 1,3glucan, J. Leukocyte Biol. 49: 266–276.

    CAS  PubMed  Google Scholar 

  • Lewinsohn, D. M., Bargatze, R. F., and Butcher, E. C., 1987, Leukocyte-endothelial cell recognition: Evidence of a common molecular mechanism shared by neutrophils, lymphocytes, and other leukocytes, J. Immunol. 138: 4313–4321.

    CAS  PubMed  Google Scholar 

  • Lewis, C. E., McCarthy, S. P., Lorenzen, J., and McGee, J. O’D., 1990, Differential effects of LPS, IFN-y and TNF-a on the secretion of lysozyme by individual human mononuclear phagocytes: Relationship to cell maturity, Immunology 69: 402–408.

    CAS  PubMed  Google Scholar 

  • Li, H., Schwinzer, R., Baccarini, M., and Lohmann-Matthes, M.-L., 1989, Cooperative effects of colony-stimulating factor I and recombinant interleukin 2 on proliferation and induction of cytotoxicity of macrophage precursors generated from mouse bone marrow cultures, J. Exp. Med. 169: 973–986.

    CAS  PubMed  CrossRef  Google Scholar 

  • Li, H., Kniep, E., Emmendörffer, A., and Lohmann-Matthes, M.-L., 1991, Differentiation of macrophage precursors to cells with LAK activity under the influence of CSF-1 and high dose IL-2, Scand. J. Immunol. 33: 511–520.

    CAS  PubMed  CrossRef  Google Scholar 

  • Liew, F. Y., Millot, S., Parkinson, C., Palmer, R. M. J., and Moncada, S., 1990, Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine, J. Immunol. 144: 4794–4797.

    CAS  PubMed  Google Scholar 

  • Liu, Y., Jones, B., Aruffo, A., Sullivan, K. M., Linsley, P. S., and Janeway, C. A., 1992, Heat-stable antigen is a costimulatory molecule for CD4 T cell growth, J. Exp. Med. 175: 437–445.

    CAS  PubMed  CrossRef  Google Scholar 

  • Lohmann-Matthes, M.-L., Emmendoerffer, A., and Li, H., 1991, Influence of interleukin-2 on the differentiation of macrophages, Pathobiology 59: 117–121.

    CAS  PubMed  CrossRef  Google Scholar 

  • Loken, M. R., Dessner-De Jose, D. S., Van Zant, G., and Goldwasser, E., 1983, Characterization of murine hemopoietic cells using rat anti-mouse monoclonal antibodies, Hybridoma 2: 55–68.

    CAS  PubMed  CrossRef  Google Scholar 

  • MacDonald, H. R., 1989, T cell repertoire selection during development, Curr. Opin. Immunol. 2: 199–203.

    CAS  PubMed  CrossRef  Google Scholar 

  • MacVittie, T. J., 1984, The macrophage colony-forming cell, Bibl. Haematol. (Pavia) 48: 112–130.

    Google Scholar 

  • Malley, A., Stewart, C. C., Stewart, S. J., Waldbeser, L., Bradley, L. M., and Shiigi, S. M., 1988, Flow cytometric analysis of I-J expression on murine bone marrow-derived macrophages, J. Leukocyte Biol. 43: 557–565.

    CAS  PubMed  Google Scholar 

  • Malorny, U., Michels, E., and Sorg, C., 1986, A monoclonal antibody against an antigen present on mouse macrophages and absent from monocytes, Cell Tissue Res. 243: 421–428.

    CAS  PubMed  CrossRef  Google Scholar 

  • Marchalonis, J. J. (ed.), 1976, Comparative Immunology, John Wiley and Sons, New York.

    Google Scholar 

  • Martin, C. A., Willmer, U., Falkenberg, F. W., and Dorf, M. E., 1988, Serological characterization of macrophage hybridomas: Identification of an interferon-y-inducible surface marker, Cell. Immunol. 112: 187–199.

    CAS  PubMed  CrossRef  Google Scholar 

  • McCormack, J. M., Sun, D., and Walker, W. S., 1991, A subset of mouse splenic macrophages can constitutively present alloantigen directly to CD8+ T cells, J. Immunol. 147: 421–427.

    CAS  PubMed  Google Scholar 

  • McGarry, M. P., and Stewart, C. C., 1991, Murine eosinophil granulocytes bind the murine macrophagemonocyte specific monoclonal antibody F4/80, J. Leukocyte Biol. 50: 471–478.

    CAS  PubMed  Google Scholar 

  • McMichael, A. J., Beverley, P. C. L., Gilks, W., Horton, M., Mason, D. Y., Cobbold, S., Gotch, F. M., Ling, N., Milstein, C., Waldmann, H., Crumpton, M. J., Hogg, N., MacLennan, I. C. M., and Spiegelhalter, D. (eds.), 1987, Leucocyte Typing III. White Cell Differentiation Antigens, Oxford University Press, Oxford.

    Google Scholar 

  • Mebius, R. E., Martens, G., Brevé, J., Delemarre, F. G. A., and Kraal, G., 1991, Is early repopulation of macrophage-depleted lymph node independent of blood monocyte immigration? Eur. J. Immunol. 21: 3041–3044.

    CAS  PubMed  CrossRef  Google Scholar 

  • Melnicoff, M. J., Horan, P. K., Breslin, E. W., and Morahan, P. S., 1988, Maintenance of peritoneal macrophages in the steady state, J. Leukocyte Biol. 44: 367–375.

    CAS  PubMed  Google Scholar 

  • Metcalf, D., 1971, Transformation of granulocytes to macrophages in bone marrow colonies in vitro, J. Cell. Physiol. 77: 277–280.

    CAS  CrossRef  Google Scholar 

  • Metcalf, D., 1984, The Hemopoietic Colony Stimulating Factors, Elsevier, Amsterdam

    Google Scholar 

  • Metcalf, D., 1988, The Molecular Control of Blood Cells, Harvard University Press, Cambridge, Mass. Metcalf, D., 1991, Control of granulocytes and macrophages: Molecular, cellular and clinical aspects, Science 254: 529–533.

    Google Scholar 

  • Metcalf, D., and Burgess, A. W., 1982, Clonal analysis of progenitor cell commitment to granulocyte or macrophage production, J. Cell. Physiol. 111: 275–283.

    CAS  PubMed  CrossRef  Google Scholar 

  • Metchnikoff, E., 1884, Concerning the relationship between phagocytes and anthrax bacilli, Virchows Arch. Pathol. Anat. 97:502–506; reprinted translation by D. Magasanik and A. H. Coons, 1984, Rev. Infect. Dis. 6: 761–770.

    CrossRef  Google Scholar 

  • Metlay, J. P., Witmer-Pack, M. D., Agger, R., Crowley, M. T., Lawless, D., and Steinman, R. M., 1990, The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies, J. Exp. Med. 171: 1753–1771.

    CAS  PubMed  CrossRef  Google Scholar 

  • Metzger, Z., Hoffeld, J. T., and Oppenheim, J. J., 1980, Macrophage-mediated suppression. I. Evidence for participation of both hydrogen peroxide and prostaglandins in suppression of murine lymphocyte proliferation, J. Immunol. 124: 983–988.

    CAS  PubMed  Google Scholar 

  • Michels, E., Burmeister, G., and Sorg, C., 1987, Generation and characterization of a monoclonal antibody (7D10) to murine migration inhibitory factor (MIF), Lymphokine Res. 6 (A): 1447.

    Google Scholar 

  • Millar, D. A., and Ratcliffe, N. A., 1989, The evolution of blood cells: Facts and enigmas, Endeavour 13: 72–77.

    CAS  PubMed  CrossRef  Google Scholar 

  • Miller, B. A., Antognetti, G., and Springer, T. A., 1985, Identification of cell surface antigens present on murine hematopoietic stem cells, J. Immunol. 134: 3286–3290.

    CAS  PubMed  Google Scholar 

  • Mills, C. D., 1991, Molecular basis of“suppressor” macrophages. Arginine metabolism via the nitric oxide synthetase pathway, J. Immunol. 146: 2719–2723.

    CAS  PubMed  Google Scholar 

  • Mohandas, N., 1991, Cell-cell interactions and erythropoiesis, Blood Cells 17: 59–64.

    CAS  PubMed  Google Scholar 

  • Moore, R. N., Pitruzzello, F. J., Deana, D. G., and Rouse, B. T., 1985a, Endogenous regulation of macrophage proliferation and differentiation by E prostaglandins and interferon «/ß, Lymphokine Res. 4: 43–50.

    CAS  Google Scholar 

  • Moore, R. N., Pitruzzello, F. J., Robinson, R. M., and Rouse, B. T., 1985b, Interferon produced endogenously in response to CSF-1 augments the functional differentiation of progeny macrophages, J. Leukocyte Biol. 37: 659–664.

    CAS  PubMed  Google Scholar 

  • Moore, R. N., Osmand, A. P., Dunn, J. A., Joshi, J. G., Koontz, J. W., and Rouse, B. T., 1989, Neurotensin regulation of macrophage colony-stimulating factor-stimulated in vitro myelopoiesis, J. Immunol. 142: 2689–2694.

    CAS  PubMed  Google Scholar 

  • Morahan, P. S., Rozner, M. A., and Jessee, E. J., 1982, Effect of elicitation on peritoneal macrophage subpopulations: Size distributions, ectoenzyme phenotypes and antitumor activity, Int. J. Cancer 30: 787–794.

    CAS  PubMed  CrossRef  Google Scholar 

  • Morris, L., Crocker, P. R., Fraser, I., Hill, M., and Gordon, S., 1991, Expression of a divalent cation-dependent erythroblast adhesion receptor by stromal macrophages from murine bone marrow, J. Cell Sci. 99: 141–147.

    CAS  PubMed  Google Scholar 

  • Mueller, D. L., Jenkins, M. K., and Schwartz, R. H., 1989, Clonal expansion versus functional clonal inactivation: A costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy, Annu. Rev. Immunol. 7: 445–480.

    CAS  PubMed  CrossRef  Google Scholar 

  • Munro, C. S., Campbell, D. A., Collings, L. A., and Poulter, L. W., 1987, Monoclonal antibodies distinguish macrophages and epithelioid cells in sarcoidosis and leprosy, Clin. Exp. Immunol. 68: 282–287.

    CAS  PubMed  Google Scholar 

  • Murphy, G. F., Messadi, D., Fonferko, E., and Hancock, W. W., 1986, Phenotypic transformation of macrophages to Langerhans cells in the skin, Am. J. Pathol. 123: 401–406.

    CAS  PubMed  Google Scholar 

  • Murray, H. W., Spitalny, G. L., and Nathan, C. F., 1985, Activation of mouse peritoneal macrophages in vitro and in vivo by interferon-7, J. Immunol. 134: 1619–1622.

    CAS  PubMed  Google Scholar 

  • Nacy, C. A., and Meltzer, M. S., 1991, T-cell mediated activation of macrophages, Curr. Opin. Immunol. 3: 330–335.

    CAS  PubMed  CrossRef  Google Scholar 

  • Nacy, C. A., Leonard, E. J., and Meltzer, M. S., 1981, Macrophages in resistance to rickettsial infections: Characterization of lymphokines that induce rickettsiacidal activity in macrophages, J. Immunol. 126: 204–207.

    CAS  PubMed  Google Scholar 

  • Naito, M., Yamamura, F., Nishikawa, S.-I., and Takahashi, K., 1989, Development, differentiation, and maturation of fetal mouse yolk sac macrophages in culture, J. Leukocyte Biol. 46: 1–10.

    CAS  PubMed  Google Scholar 

  • Naito, M., Takahashi, K., and Nishikawa, S.-I., 1990, Development, differentiation, and maturation of macrophages in the fetal mouse liver, J. Leukocyte Biol. 48: 27–37.

    CAS  PubMed  Google Scholar 

  • Najar, H. M., Ruhl, S., Bru-Capdeville, A. C., and Peters, J. H., 1990, Adenosine and its derivatives control human monocyte differentiation into highly accessory cells versus macrophages, J. Leukocyte Biol. 47: 429–439.

    CAS  PubMed  Google Scholar 

  • Nathan, C. F., 1987, Secretory products of macrophages, J. Clin. Invest 79: 319–326.

    CAS  PubMed  CrossRef  Google Scholar 

  • Nathan, C. F., and Hibbs, J. B., Jr., 1991, Role of nitric oxide synthesis in macrophage antimicrobial activity, Curr. Opin. Immunol. 3: 65–70.

    CAS  PubMed  CrossRef  Google Scholar 

  • Nei, M., and Koehn, R. K. (eds.), 1983, Evolution of Genes and Proteins, Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Neumann, C., and Sorg, C., 1980, Sequential expression of functions during macrophage differentiation in murine bone marrow liquid cultures, Eur. J. Immunol. 10: 834–840.

    CAS  PubMed  CrossRef  Google Scholar 

  • Nibbering, P. H., Leijh, P. C. J., and Van Furth, R., 1987, Quantitative immunocytochemical characterization of mononuclear phagocytes. I. Monoblasts, promonocytes, monocytes, and peritoneal and alveolar macrophages, Cell. Immunol. 105: 374–385.

    CAS  PubMed  CrossRef  Google Scholar 

  • Normann, S. J., and Weiner, R., 1983, Cytotoxicity of human peripheral blood monocytes, Cell. Immunol. 81: 413–425.

    CAS  PubMed  CrossRef  Google Scholar 

  • Novak, J. P., Skamene, E., and Gervais, F., 1989, Quantitative model of mononuclear phagocyte lineage proliferation in murine bone marrow, J. Leukocyte Biol. 46: 25–33.

    CAS  PubMed  Google Scholar 

  • Nussenzweig, M. C., Steinman, R. M., Witmer, M. D., and Gutchinov, B., 1982, A monoclonal antibody specific for mouse dendritic cells, Proc. Natl. Acad. Sci. USA 79: 161–165.

    CAS  PubMed  CrossRef  Google Scholar 

  • Ogawa, M., Porter, P. N., and Nakahata, T., 1983, Renewal and commitment to differentiation of hemopoietic stem cells (an interpretive review), Blood 61: 823–829.

    CAS  PubMed  Google Scholar 

  • Oliver, A. M., 1990, Macrophage heterogeneity in human fetal tissue. Fetal macrophages, Clin. Exp. Immunol. 80: 454–459.

    CAS  PubMed  CrossRef  Google Scholar 

  • Ortega, G., Robb, R. J., Shevach, E. M., and Malek, T., 1984, The murine IL-2 receptor. I. Monoclonal antibodies that define distinct functional epitopes on activated T cells and react with activated B cells, J. Immunol. 133: 1970–1975.

    CAS  PubMed  Google Scholar 

  • Osawa, H., and Diamantstein, T., 1984, A rat monoclonal antibody that binds specifically to mouse T lymphoblasts and inhibits IL 2 receptor functions: A putative anti-IL 2 receptor antibody, J. Immunol. 132: 2445–2450.

    CAS  PubMed  Google Scholar 

  • Papadimitriou, J. M., and Ashman, R. B., 1989, Macrophages: Current views on their differentiation, structure and function, Ultrastruct. Pathol. 13: 343–372.

    CAS  PubMed  CrossRef  Google Scholar 

  • Papiernik, M., Lehuen, A., and Savino, W., 1987a, Definition of a differentiation antigen on the surface of phagocytic cells of thymic reticulum which is down-regulated by interferon-y, Cell. Immunol. 105: 280–289.

    Google Scholar 

  • Papiernik, M., Penit, C., and El Rouby, S., I987b, Control of prothymocyte proliferation by thymic accessory cells, Eur. J. Immunol. 17: 1303–1310.

    Google Scholar 

  • Papiernik, M., Lepault, F., and Pontoux, C., 1988, Synergistic effect of colony-stimulating factors and IL-2 on prothymocyte proliferation linked to the maturation of macrophage/dendritic cells within L3T4-Lyt-21a Mac cells, J. Immunol. 140: 1431–1434.

    CAS  PubMed  Google Scholar 

  • Pasquale, D., Chikkappa, G., Wang, G., and Santella, D., 1989, Hydrocortisone promotes survival and proliferation of granulocyte-macrophage progenitors via monocytes/macrophages, Exp. Hematol. 17: 1110–1115.

    CAS  PubMed  Google Scholar 

  • Paulnock, D. M., and Lambert, L. E., 1990, Identification and characterization of monoclonal antibodies specific for macrophages at intermediate stages in the tumoricidal activation pathway, J. Immunol. 144: 765–773.

    CAS  PubMed  Google Scholar 

  • Perry, V. H., and Gordon, S., 1991, Macrophages and the nervous system, Int. Rev. Cytol. 125: 203–244.

    CAS  PubMed  CrossRef  Google Scholar 

  • Perussia, B., Dayton, E. T., Fanning, V., Thiagarajan, P., Hoxie, J., and Trinchieri, G., 1983, Immune interferon and leukocyte conditioned medium induce normal and leukemic myeloid cells to differentiate along the monocytic pathway, J. Exp. Med. 158: 2058–2080.

    CAS  PubMed  CrossRef  Google Scholar 

  • Peters, J. H., Börner, T., and Ruppert, J., 1990, Accessory phenotype and function of macrophages induced by cyclic adenosine monophosphate, Int. Immunol. 2: 1195–1202.

    CAS  PubMed  CrossRef  Google Scholar 

  • Peters, J. H., Ruppert, J., Gieseler, R. K. H., Najar, H. M., and Xu, H., 1991, Differentiation of human monocytes into CD 14 negative accessory cells: Do dendritic cells derive from the monocytic lineage? Pathobiology 59: 122–126.

    CAS  PubMed  CrossRef  Google Scholar 

  • Peters-Golden, M., McNish, R. W., Hyzy, R., Shelly, C., and Toews, G. B., 1990, Alterations in the pattern of arachidonate metabolism accompany rat macrophage differentiation in the lung, J. Immunol. 144: 263–270.

    CAS  PubMed  Google Scholar 

  • Petty, H. R., Fox, B. A., Berg, K. A., and Francis, J. W., 1987, A monoclonal antibody (BMA-1) reactive with murine B cells as well as resident and elicited but not activated macrophages, Immunol. Lett. 15: 341–346.

    CrossRef  Google Scholar 

  • Phipps, R. P., Roper, R. L., and Stein, S. H., 1990, Regulation of B-cell tolerance and triggering by macrophages and lymphoid dendritic cells, Immunol. Rev. 117: 135–158.

    CAS  PubMed  CrossRef  Google Scholar 

  • Pierce, G. F., Mustoe, T. A., Lingelbach, J., Masakowski, V. R., Gramates, P., and Deuel, T. F., 1989, Transforming growth factor ß reverses the glucocorticoid-induced wound-healing deficit in rats: possible regulation in macrophages by platelet-derived growth factor, Proc. Natl. Acad. Sci. USA 86: 2229–2233.

    CAS  PubMed  CrossRef  Google Scholar 

  • Pierres, M., Goridis, C., and Goldstein, P., 1982, Inhibition of murine T cell-mediated cytolysis and T cell proliferation by a rat monoclonal antibody immunoprecipitating two lymphoid cell surface polypeptides of 94 000 and 180 000 molecular weight, Eur. J. Immunol. 12: 60–69.

    CAS  PubMed  CrossRef  Google Scholar 

  • Pierres, A., Naquet, P., van Agthoven, A., Bekkhoucha, F., Denizot, F., Mishal, Z., Schmitt-Verhulst, A.-M., and Pierres, M., 1984, A rat anti-mouse T4 monoclonal antibody (H129.19) inhibits the proliferation of Ia-reactive T cell clones and delineates two phenotypically distinct (T4+, Lyt-2,3-, and T4-, Lyt-2,3’) subsets among anti-Ia cytolytic T cell clones, J. Immunol. 132: 2775–2782.

    CAS  PubMed  Google Scholar 

  • Pino, R. M., and Bankston, P. W., 1979, The development of the sinusoids of fetal rat liver: Localization of endogenous peroxidase in fetal Kupffer cells, J. Histochem. Cytochem. 27: 643–652.

    CAS  PubMed  CrossRef  Google Scholar 

  • Pirami, L., Stockinger, B., Corradin, S. B., Sironi, M., Sassano, M., Valsasnini, P., Righi, M., and Ricciardi-Castagnoli, P., 1991, Mouse macrophage clones immortalized by retroviruses are functionally heterogeneous, Proc. Natl. Acad. Sei. USA 88: 7543–7547.

    CAS  CrossRef  Google Scholar 

  • Prieto, J., Takei, F., Gendelman, R., Christenson, B., Biberfeld, P., and Patarroyo, M., 1989, MALA-2, mouse homologue of human adhesion molecule ICAM-1 (CD54), Eur. J. Immunol. 19: 1551–1557.

    CAS  PubMed  CrossRef  Google Scholar 

  • Rabinowitz, S. S., and Gordon, S., 1991, Macrosialin, a macrophage-restricted membrane sialoprotein differentially glycosylated in response to inflammatory stimuli, J. Exp. Med. 174: 827–836.

    CAS  PubMed  CrossRef  Google Scholar 

  • Radzun, H. J., Parwaresch, M. R., Bödewadt, S., Sundström, C., and Lennert, K., 1985, Bimodal differentiation prospectives for promyelocytes, J. Natl. Cancer Inst. 75: 199–203.

    CAS  PubMed  Google Scholar 

  • Radzun, H. J., Kreipe, H., Zavazava, N., Hansmann, M.-L., and Parwaresch, M. R., 1988, Diversity of the human monocyte/macrophage system as detected by monoclonal antibodies, J. Leukocyte Biol. 43: 41–50.

    CAS  PubMed  Google Scholar 

  • Rappolee, D. A., and Werb, Z., 1988, Secretory products of phagocytes, Curr. Opin. Immunol. 1: 47–55.

    CAS  PubMed  CrossRef  Google Scholar 

  • Reid, C. D. L., Fryer, P. R., Clifford, C., Kirk, A., Tikerpae, J., and Knight, S. C., 1990, Identification of hematopoietic progenitors of macrophages and dendritic Langerhans cells (DL-CFU) in human bone marrow and peripheral blood, Blood 76: 1 139–1149.

    Google Scholar 

  • Reinherz, E. L., Haynes, B. F., Nadler, L. M., and Bernstein, I. D. (eds.), 1986, Leucocyte Typing II, Vol. 3, Human Myeloid and Hematopoietic Cells, Springer-Verlag, Berlin.

    Google Scholar 

  • Rich, I. N., 1986, A role for the macrophage in normal hemopoiesis. I. Functional capacity of bone-marrow-derived macrophages to release hemopoietic growth factors, Exp. Hematol. 14: 738–745.

    CAS  PubMed  Google Scholar 

  • Riches, D. W. H., 1988, The multiple roles of macrophages in wound healing, in The Molecular and Cellular Biology of Wound Repair ( R. A. F. Clark and P. M. Henson, eds.), pp. 213–239, Plenum Press, New York.

    CrossRef  Google Scholar 

  • Riches, D. W. H., and Henson, P. M., 1986, Bacterial lipopolysaccharide suppresses the production of catalytically active lysosomal acid hydrolases in human macrophages, J. Cell Biol. 102: 1606–1614.

    CAS  PubMed  CrossRef  Google Scholar 

  • Riches, D. W. H., and Underwood, G. A., 1991, Expression of IFN-ß during the triggering phase of macrophage cytocidal activation. Evidence for an autocrine/paracrine role in the regulation of this state, J. Biol. Chem. 266: 24785–24792.

    CAS  PubMed  Google Scholar 

  • Riches, D. W. H., Henson, P. M., Remigio, L. K., Catterall, J. F., and Strunk, R. C., 1988, Differential regulation of gene expression during macrophage activation with a polyribonucleotide. The role of endogenously derived IFN, J. Immunol. 141: 180–188.

    CAS  PubMed  Google Scholar 

  • Righi, M., Mori, L., De Libero, G., Sironi, M., Biondi, A., Mantovani, A., Denis Donini, S., and Ricciardi, N., Castagnoli, P., 1989, Monokine production by microglial cell clones, Eur. J. Immunol. 19: 1443–1448.

    CAS  PubMed  CrossRef  Google Scholar 

  • Rizvi, N., Chaturvedi, U. C., and Mathur, A., 1989, Obligatory role of macrophages in dengue virus antigen presentation to B lymphocytes, Immunology 67: 38–43.

    CAS  PubMed  Google Scholar 

  • Röber, R.-A., Weber, K., and Osborn, M., 1989, Differential timing of lamin A/C expression in the various organs of the mouse embryo and the young animal: A developmental study, Development 105: 365–378.

    PubMed  Google Scholar 

  • Ober, R.-A., Gieseler, R. K. H., Peters, J. H., Weber, K., and Osborn, M., 1990, Induction of nuclear lamins A/C in macrophages in in vitro cultures of rat bone marrow precursor cells and human blood monocytes, and in macrophages elicited in vivo by thioglycollate stimulation, Exp. Cell. Res. 190: 185–194.

    CrossRef  Google Scholar 

  • Robinson, B. E., and Quesenberry, P. J., 1990a, Hematopoietic growth factors: overview and clinical applications, Part I, Am. J. Med. Sei. 300: 163–170.

    CAS  CrossRef  Google Scholar 

  • Robinson, B. E., and Quesenberry, P. J., 1990b, Hematopoietic growth factors: Overview and clinical applications, Part II, Am. J. Med. Sci. 300: 237–244.

    CAS  PubMed  CrossRef  Google Scholar 

  • Robinson, B. E., and Quesenberry, P. J., 1990c, Hematopoietic growth factors: Overview and clinical applications, Part III, Am. J. Med. Sci. 300: 311–321.

    CAS  PubMed  CrossRef  Google Scholar 

  • Roodman, G. R., 1991, Osteoclast differentiation, Crit. Rev. Oral Biol. Med. 2: 389–409.

    CAS  PubMed  Google Scholar 

  • Rosen, H., and Law, S. K. A., 1989, The leukocyte cell surface receptor(s) for the iC3b product of complement, Curr. Top. Microbiol. Immunol. 153: 99–122.

    CrossRef  Google Scholar 

  • Rosen, H., Milon, G., and Gordon, S., 1989, Antibody to the murine type 3 complement receptor inhibits T lymphocyte-dependent recruitment of myelomonocytic cells in vivo, J. Exp. Med. 169: 535–548.

    CAS  CrossRef  Google Scholar 

  • Rosmarin, A. G., Weil, S. C., Rosner, G. L., Griffin, J. D., Arnaout, M. A., and Tenen, D. G., 1989, Differential expression of CD 11 b/CD 18 (Mo 1) and myeloperoxidase genes during myeloid differentiation, Blood 73: 131–136.

    CAS  PubMed  Google Scholar 

  • Rosser, S., 1976, Phylogenetic origins of the vertebrates, in Comparative Immunology (J. J. Marchalonis, ed.), pp. l-19, John Wiley & Sons, New York.

    Google Scholar 

  • Ruscetti, F. W., Jacobsen, S. E., Birchenall-Roberts, M., Broxmeyer, H. E., Engelmann, G. L., Dubois, C., and Keller, J. R., 1991, Role of transforming growth factor-ßl in regulation of hematopoiesis, Ann. N. Y. Acad. Sci. 628: 31–43.

    CAS  PubMed  CrossRef  Google Scholar 

  • Rutherford, M. S. and Schook, L. B., 1992, Differential immunocompetence of macrophages derived using macrophage or granulocyte-macrophage colony-stimulating factor, J. Leukocyte Biol. 51: 69–76.

    CAS  PubMed  Google Scholar 

  • Sadahira, Y., Mori, M., Awai, M., Watarai, S., and Yasuda, T., 1988, Forssman glycosphingolipid as an immunohistochemical marker for mouse stromal macrophages in hematopoietic foci, Blood 72: 42–48.

    CAS  PubMed  Google Scholar 

  • Sadahira, Y., Yasuda, T., and Kimoto, T., 1991, Regulation of Forssman antigen expression during maturation of mouse stromal macrophages in haematopoietic foci, Immunology 73: 498–504.

    CAS  PubMed  Google Scholar 

  • Sakata, T., Iwagami, S., Tsuruta, Y., Teraoka, H., Hojo, K., Suzuki, S., Sato, K., and Suzuki, R., 1990, The role of lipocortin I in macrophage-mediated immunosuppression in tumor-bearing mice, J. Immunol. 145: 387–396.

    CAS  PubMed  Google Scholar 

  • Sanchez-Madrid, F., Simon, P., Thompson, S., and Springer, T. A., 1983, Mapping of antigenic and functional epitopes on the a-and ß-subunits of two related mouse glycoproteins involved in cell interactions, LFA-1 and Mac-1, J. Exp. Med. 158: 586–602.

    CAS  PubMed  CrossRef  Google Scholar 

  • Sandrin, M. S., Hogart, P. M., and McKenzie, I. F. C., 1983, Two “Qa” specificities: Qa-m7 and Qa-m8 defined by monoclonal antibodies, J. Immunol. 131: 546–547.

    CAS  PubMed  Google Scholar 

  • Savill, J., Dransfield, I., Hogg, N., and Haslett, C., 1990, Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis, Nature (London) 343: 170–173.

    CAS  Google Scholar 

  • Sawyer, R. T., 1986a, The significance of local resident pulmonary alveolar macrophage proliferation to population renewal, J. Leukocyte Biol. 39: 77–87.

    CAS  PubMed  Google Scholar 

  • Sawyer, R. T., 1986b, The cytokinetic behavior of pulmonary alveolar macrophages in monocytopenic mice, J. Leukocyte Biol. 39: 89–99.

    CAS  PubMed  Google Scholar 

  • Sawyer, R. T., 1986c, The ontogeny of pulmonary alveolar macrophages in parabiotic mice, J. Leukocyte Biol. 40: 347–354.

    CAS  PubMed  Google Scholar 

  • Sawyer, R. T., Strausbauch, P. H. and Volkman, A., 1982, Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89, Lab. Invest. 46: 165–170.

    CAS  PubMed  Google Scholar 

  • Schade, U. F., Burmeister, I., Elekes, E., Engel, R. and Wolter, D. T., 1989, Mononuclear phagocytes and eicosanoids: Aspects of their synthesis and biological activities, Blut 59: 475–485.

    CAS  PubMed  CrossRef  Google Scholar 

  • Scheven, B. A. A., and Hamilton, N. J., 1991, Stimulation of macrophage growth and multinucleated cell formation in rat bone marrow cultures by insulin-like growth factor I, Biochem. Biophys. Res. Commun. 174: 647–653.

    CAS  PubMed  CrossRef  Google Scholar 

  • Schlesinger, L. S., Bellinger-Kawahara, C. G., Payne, N. R., and Horwitz, M. A., 1990, Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3, J. Immunol. 144: 2771–2780.

    CAS  PubMed  Google Scholar 

  • Schuler, G., and Steinman, R. M., 1985, Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro, J. Exp. Med. 161: 526–546.

    CAS  CrossRef  Google Scholar 

  • Schwamberger, G., Flesch, I., and Ferber, E., 1991, Tumoricidal effector molecules of murine macrophages, Pathobiology 59: 248–253.

    CAS  PubMed  CrossRef  Google Scholar 

  • Schwartz, R. H., 1990, A cell culture model for T lymphocyte clonal anergy, Science 248: 1349–1356.

    CAS  PubMed  CrossRef  Google Scholar 

  • Sherr, C. J., 1990, The colony-stimulating factor 1 receptor: Pleiotropy of signal-response coupling, Lymphokine Res. 9: 543–548.

    CAS  PubMed  Google Scholar 

  • Shezen, E., Shirman, M., and Goldman, R., 1985, Opposing effects of dexamethasone on the clonal growth of granulocyte and macrophage progenitor cells and on the phagocytic capability of mononuclear phagocytes at different stages of differentiation, J Cell. Physiol. 124: 545–553.

    CAS  PubMed  CrossRef  Google Scholar 

  • Shibata, Y., and Volkman, A., 1985, The effect of bone marrow depletion on prostaglandin E-producing suppressor macrophages in mouse spleen, J. Immunol. 135: 3897–3904.

    CAS  PubMed  Google Scholar 

  • Simms, H. H., Gaither, T. A., Fries, L. F., and Frank, M. M., 1991, Monokines released during short-term Fc-y receptor phagocytosis up-regulate polymorphonuclear leukocytes and monocyte-phagocytic function, J. Immunol. 147: 265–272.

    CAS  PubMed  Google Scholar 

  • Sluiter, W., Hulsing-Hesselink, E., Elzenga-Claasen, I., Van Hemsbergen-Oomens, L. W. M., Van der Voort Van der Kleij-Van Andel, A., and Van Furth, R., 1987, Macrophages as origin of factor increasing monocytopoiesis, J. Exp. Med. 166: 909–922.

    CAS  Google Scholar 

  • Smith, M. J., and Koch, G. L. E., 1987, Differential expression of murine macrophage surface glycoprotein antigens in intracellular membranes, J. Cell Sci. 87: 113–119.

    CAS  PubMed  Google Scholar 

  • Smith, C. W., Marlin, S. D., Rothlein, R., Toman, C., and Anderson, D. C., 1989, Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro, J. Clin. Invest. 83: 2008–2017.

    CAS  PubMed  CrossRef  Google Scholar 

  • Solomon, F. R., and Higgins, T. J., 1987, A monoclonal antibody with reactivity to asialo GM, and murine natural killer cells, Mol. Immunol. 24: 57–65.

    CAS  PubMed  CrossRef  Google Scholar 

  • Someya, A., 1985, Specific surface antigens expressed on activated mouse peritoneal macrophages and recognized by a novel monoclonal antibody, Immunology 56: 683–688.

    CAS  PubMed  Google Scholar 

  • Someya, A., 1986, A novel rat monoclonal antibody reactive with murine tumoricidal Kupffer cells and activated peritoneal macrophages from BCG-infected mice, Immunology 57: 605–610.

    CAS  PubMed  Google Scholar 

  • Sonnenberg, A., Van Balen, P., Hengeveld, T., Kolvenbag, G. J. C. M., Van Hoeven, R. P., and Hilgers, J., 1986, Monoclonal antibodies detecting different epitopes on the Forssman glycolipid hapten, J. Immunol. 137: 1264–1269.

    CAS  PubMed  Google Scholar 

  • Sorg, C., and Odink, K., 1987, The molecular complex of macrophage migration inhibitory activity (MIF) and its role in inflammatory reactions, in Molecular Basis of Lymphokine Action ( D. R. Webb, C. W. Pierce, and S. Cohen, eds.), pp. 271–281, Humana Press, Clifton, N.J.

    CrossRef  Google Scholar 

  • Sorokin, S. P., Hoyt, R. F., and Grant, M. M., 1984, Development of macrophages in the lungs of fetal rabbits, rats, and hamsters, Anat. Rec. 208: 103–121.

    CAS  PubMed  CrossRef  Google Scholar 

  • Sorokin, S. P., Kobzik, L., Hoyt, R. F., and Godleski, J. J., 1989, Development of surface membrane characteristics of “premedullary” macrophages in organ cultures of embryonic rat and hamster lungs, J Histochem. Cytochem. 37: 365–376.

    CAS  PubMed  CrossRef  Google Scholar 

  • Springer, T. A., 1980, Cell-surface differentiation in the mouse. Characterization of “jumping” and “lineage” antigens using xenogeneic rat monoclonal antibodies, in Monoclonal Antibodies. Hybridomas: A New Dimension in Biological Analysis ( R. H. Kennett, T. J. McKearn, and K. B. Bechtol, eds.), pp. 185–217, Plenum Press, New York.

    CrossRef  Google Scholar 

  • Springer, T. A., 1981, Monoclonal antibodies as tools for the study of mononuclear phagocytes, in Methods for Studying Mononuclear Phagocytes ( D. O. Adams, P. J. Edelson, and H. S. Koren, eds.), pp. 305–313, Academic Press, New York.

    CrossRef  Google Scholar 

  • Springer, T. A., Galfré, G., Secher, D. S., and Milstein, C., 1979, Mac-1: A macrophage differentiation antigen identified by monoclonal antibody, Eur. J Immunol. 9: 301–306.

    CAS  PubMed  CrossRef  Google Scholar 

  • Srimal, S., and Nathan, C., 1990, Purification of macrophage deactivating factor, J. Exp. Med. 171: 1347–1361.

    CAS  PubMed  CrossRef  Google Scholar 

  • Starkey, P. M., Turley, L., and Gordon, S., 1987, The mouse macrophage-specific glycoprotein defined by mooclonal antibody F4/80: Characterization, biosynthesis and demonstration of a rat analogue, Immunology 60: 117–122.

    CAS  PubMed  Google Scholar 

  • Steinman, R. M., 1991, The dendritic cell system and its role in immunogenicity, Annu. Rev. Immunol. 9: 271–296.

    CAS  PubMed  CrossRef  Google Scholar 

  • Steinman, R. M., and Young, J. W., 1991, Signals arising from antigen-presenting cells, Curr. Opin. Immunol. 3: 361–372.

    CAS  PubMed  CrossRef  Google Scholar 

  • Steuhr, D. J., and Nathan, C. F., 1989, Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor targets, J. Exp. Med. 169: 1543–1555.

    CrossRef  Google Scholar 

  • Stingl, G., Wolff-Schreiner, E. C., Pichler, W. J., Gschnait, F., Knapp, W., and Wolff, K., 1977, Epidermal Langerhans cells bear Fc and C3 receptors, Nature (London) 268: 245–246.

    CAS  CrossRef  Google Scholar 

  • Suda, T., 1989, The role of la,25-dihydroxyvitamin D3 in the myeloid cell differentiation, Proc. Soc. Exp. Biol. Med. 191: 214–220.

    CAS  PubMed  Google Scholar 

  • Sun, D., and Lohmann-Matthes, M.-L., 1982, Functionally different subpopulations of mouse macrophages recognized by monoclonal antibodies, Eur. J. Immunol. 12: 134–140.

    CAS  PubMed  CrossRef  Google Scholar 

  • Szabo, G., Miller, C. L., and Kodys, K., 1990, Antigen presentation by the CD4 positive monocyte subset, J. Leukocyte Biol. 47: 111–120.

    CAS  PubMed  Google Scholar 

  • Takahashi, K., Yamamura, F., and Naito, M., 1989, Differentiation, maturation, and proliferation of macrophages in the yolk sac: A light-microscopic, enzyme-cytochemical, immunohistochemical, and ultrastructural study, J. Leukocyte Biol. 45: 87–96.

    CAS  PubMed  Google Scholar 

  • Takahashi, K., Naito, M., Katabuchi, H., and Higashi, K., 1991, Development, differentiation, and maturation of macrophages in the chorionic villi of mouse placenta with special reference to the origin of Hofbauer cells, J. Leukocyte Biol. 50: 57–68.

    CAS  PubMed  Google Scholar 

  • Takei, F., 1985, Inhibition of mixed lymphocyte response by a rat monoclonal antibody to a novel murine lymphocyte activation antigen (MALA-2), J. Immunol. 134: 1403–1407.

    CAS  PubMed  Google Scholar 

  • Takemura, R., and Werb, Z., 1984, Secretory products of macrophages and their physiological functions, Am. J. Physiol. 246: C1 - C9.

    CAS  PubMed  Google Scholar 

  • Taniyama, T., and Tokunaga, T., 1983, Monoclonal antibodies directed against mouse macrophages in different stages of activation for tumor cytotoxicity, J. Immunol. 131: 1032–1037.

    CAS  PubMed  Google Scholar 

  • Taniyama, T., and Watanabe, T., 1982, Establishment of a hybridoma secreting a monoclonal antibody specific for activated tumoricidal macrophages, J. Exp. Med. 156: 1286–1291.

    CAS  PubMed  CrossRef  Google Scholar 

  • Tarling, J. D., and Coggle, J. E., 1982, Evidence for the pulmonary origin of alveolar macrophages, Cell Tissue Kinet. 15: 577–584.

    CAS  PubMed  Google Scholar 

  • Tarling, J. D., Lin, H.-S., and Hsu, S., 1987, Self-renewal of pulmonary alveolar macrophages: Evidence from radiation chimera studies, J. Leukocyte Biol. 42: 443–446.

    CAS  PubMed  Google Scholar 

  • Theisen, M., Stief, A., and Sippel, A. E., 1986, The lysozyme enhancer: Cell-specific activation of the chicken lysozyme gene by a far-upstream DNA element, EMBO J. 5: 719–724.

    CAS  PubMed  Google Scholar 

  • Thepen, T., Van Rooyen, N., and Kraal, G., 1989, Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice, J. Exp. Med. 170: 499–509.

    CAS  PubMed  CrossRef  Google Scholar 

  • Titus, R. G., Sherry, B., and Cerami, A., 1989, Tumor necrosis factor plays a protective role in experimental murine cutaneous leishmaniasis, J. Exp. Med. 170: 2097–2104.

    CAS  PubMed  CrossRef  Google Scholar 

  • Tomioka, H., and Saito, H., 1992, Characterization of immunosuppressive functions of murine peritoneal macrophages induced with various agents, J. Leukocyte Biol. 51: 24–31.

    CAS  PubMed  Google Scholar 

  • Treves, A. J., 1984, The origin of monocyte-macrophage heterogeneity: Possible alternatives, Med. Hypothes. 14: 335–346.

    CAS  CrossRef  Google Scholar 

  • Trinchieri, G., 1989, Biology of natural killer cells, Adv. Immunol. 47: 187–376.

    CAS  PubMed  CrossRef  Google Scholar 

  • Trowbridge, I. S., Lesley, J., Schulte, R., Hyman, R., and Trotter, J., 1982, Biochemical characterization and cellular distribution of a polymorphic, murine cell-surface glycoprotein expressed on lymphoid tissues. Immunogenetics 15: 299–312.

    CAS  PubMed  CrossRef  Google Scholar 

  • Turk, J. L., 1985, The mononuclear phagocyte system in granulomas, Br. J. Dermatol. 113 (Suppl. 28): 49–54.

    PubMed  CrossRef  Google Scholar 

  • Turk, J. L., 1989, Current status review: A comparison of secretory epithelioid cells and phagocytosing macrophages in experimental mycobacterial granulomas, Br. J. Exp. Pathol. 70: 589–596.

    CAS  PubMed  Google Scholar 

  • Turk, J. L., and Narayanan, R. B., 1982, The origin, morphology, and function of epithelioid cells, Immunobiology 161: 274–282.

    CAS  PubMed  CrossRef  Google Scholar 

  • Turyna, B., and Szuba, K., 1988, The comparison of lysosomal enzymes activities in alveolar and peritoneal macrophages of rat, Biochem. Int. 17: 433–440.

    CAS  PubMed  Google Scholar 

  • Uchida, T., Ju, S.-T., Fay, A., Liu, Y.-N., and Dorf, M. E., 1985, Functional analysis of macrophage hybridomas. I. Production and initial characterization, J. Immunol. 134: 772–778.

    CAS  PubMed  Google Scholar 

  • Unkeless, J. C., 1979, Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors, J. Exp. Med. 150: 580–596.

    CAS  PubMed  CrossRef  Google Scholar 

  • Uren, S., and Boyle, W., 1989, Stimulation of allogeneic and autologous MLR by subpopulations of human monocytes, Transplant. Proc. 21: 208–210.

    CAS  PubMed  Google Scholar 

  • Van Agthoven, A., Goridis, C., Naquet, P., Pierres, A., and Pierres, M., 1984, Structural characteristics of the mouse transferrin receptor, Eur. J. Biochem. 140: 433–440.

    PubMed  CrossRef  Google Scholar 

  • Van der Meer, J. W. M., Beelen, R. H. J., Fluitsma, D. M., and Van Furth, R., 1979, Ultrastructure of mononuclear phagocytes developing in liquid bone marrow cultures. A study on peroxidatic activity, J. Exp. Med. 149: 17–26.

    PubMed  CrossRef  Google Scholar 

  • Van der Meer, J. W. M., Van de Gevel, J. S., and Van Furth, R., 1983, Characteristics of long-term cultures of proliferating, mononuclear phagocytes from bone marrow, J. Reticuloendothel. Soc. 34: 203–225.

    PubMed  Google Scholar 

  • Van Dissel, J. T., Stikkelbroeck, J. J. M., Michel, B. C., van den Barselaar, M. Th., Leijh, P. C. J., and Van Furth, R., 1987, Inability of recombinant interferon-y to activate the antibacterial activity of mouse peritoneal macrophages against Listeria monocytogenes and Salmonella typhimurium, J. Immunol. 139: 1673–1678.

    Google Scholar 

  • Van Ewijk, W., 1984, Immunohistology of lymphoid and non-lymphoid cells in the thymus in relation to T lymphocyte differentiation, Am. J. Anat. 170: 311–330.

    PubMed  CrossRef  Google Scholar 

  • Van Ewijk, W., 1991, T-cell differentiation is influenced by thymic microenvironments, Annu. Rev. Immunol. 9: 591–615.

    PubMed  CrossRef  Google Scholar 

  • Van Furth, R., 1980, Cells of the mononuclear phagocyte system. Nomenclature in terms of sites and conditions, in Mononuclear Phagocytes: Functional Aspects ( R. Van Furth, ed.), pp. 1–30, Martinus Nijhoff, Dordrecht.

    Google Scholar 

  • Van Furth, R., 1988, Phagocytic cells: Development and distribution of mononuclear phagocytes in normal steady state and inflammation, in Inflammation: Basic Principles and Clinical Correlates ( J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds.), pp. 281–295, Raven Press, New York.

    Google Scholar 

  • Van Furth, R., 1989, Origin and turnover of monocytes and macrophages, Curr. Top. Pathol. 79: 125–150.

    PubMed  CrossRef  Google Scholar 

  • Van Furth, R., and Cohn, Z. A., 1968, The origin and kinetics of mononuclear phagocytes, J. Exp. Med. 128: 415–433.

    PubMed  CrossRef  Google Scholar 

  • Van Furth, R., and Diesselhoff-den Dulk, M. M. C., 1970, The kinetics of promonocytes and monocytes in the bone marrow, J. Exp. Med. 132: 813–828.

    PubMed  CrossRef  Google Scholar 

  • Van Furth, R., Hirsch, J. G., and Fedorko, M. E., 1970, Morphology and peroxidase cytochemistry of mouse promonocytes, monocytes and macrophages, J. Exp. Med. 132: 794–805.

    PubMed  CrossRef  Google Scholar 

  • Van Furth, R., Cohn, Z. A., Hirsch, J. G., Humphrey, J. H., Spector, W. G., and Langevoort, H. L., 1972, The mononuclear phagocyte system: A new classification of macrophages, monocytes, and their precursor cells, Bull. WHO 46: 845–852.

    PubMed  Google Scholar 

  • Van Furth, R., Diesselhoff-den Dulk, M. M. C., Sluiter, W., and Van Dissel, J. T., 1985, New perspectives on the kinetics of mononuclear phagocytes, in Mononuclear Phagocytes: Characteristics, Physiology and Function ( R. Van Furth, ed.), pp. 201–208, Martinus Nijhoff, The Hague.

    CrossRef  Google Scholar 

  • Van Oss, C. J., 1986, Phagocytosis: An overview, Methods Enzymol. 132: 3–15.

    PubMed  CrossRef  Google Scholar 

  • Van Rees, E. P., Dijkstra, C. D., Van der Ende, M. B., Janse, E. M., and Sminia, T., 1988, The ontogenetic development of macrophage subpopulations and Ia-positive non-lymphoid cells in gut-associated lymphoid tissue of the rat, Immunology 63: 79–85.

    PubMed  Google Scholar 

  • Van Rooyen, N., 1990, Antigen processing and presentation in vivo: The microenvironment as a crucial factor, Immunol. Today 11: 436–439.

    CrossRef  Google Scholar 

  • Van Rooyen, N., Kors, N., and Kraal, G., 1989, Macrophage subset repopulation in the spleen: Differential kinetics after liposome-mediated elimination, J. Leukocyte Biol. 45: 97–104.

    Google Scholar 

  • Van Seventer, G. A., Shimizu, Y., and Shaw, S., 1991, Roles of multiple accessory molecules in T-cell activation, Curr. Opin. Immunol. 3: 294–303.

    PubMed  CrossRef  Google Scholar 

  • Van Vliet, E., Melis, M., and Van Ewijk, W., 1984, Monoclonal antibodies to stromal cell types of the mouse thymus, Eur. J. Immunol. 14: 524–529.

    PubMed  CrossRef  Google Scholar 

  • Van Vliet, E., Melis, M., and Van Ewijk, W., 1985, Marginal zone macrophages in the mouse spleen identified by a monoclonal antibody. Anatomical correlation with a B cell subpopulation, J Histochem. Cytochem. 33: 40–44.

    PubMed  CrossRef  Google Scholar 

  • Varesio, L., Landolfo, S., Giovarelli, M., and Forni, G., 1980, The macrophage as the social interconnection within the immune system, Dev. Comp. Immunol. 4: 11–19.

    CAS  PubMed  CrossRef  Google Scholar 

  • Vogel, S. N., and Hogan, M. M., 1990, Role of cytokines in endotoxin-mediated host responses, in Immunophysiology: The Role of Cells and Cytokines in Immunity and Inflammation ( J. J. Oppenheim and E. M. Shevach, eds.), pp. 238–258, Oxford University Press, New York.

    Google Scholar 

  • Vogt, C., Noé, G., and Rich, I. N., 1991, The role of the blood island during normal and 5-fluorouracilperturbated hemopoiesis, Blood Cells 17: 105–125.

    CAS  PubMed  Google Scholar 

  • Volkman, A., and Gowans, J. L., 1965, The origin of macrophages from bone marrow in the rat, Br. J. Exp. Pathol. 46: 62–70.

    CAS  PubMed  Google Scholar 

  • Volkman, A., Chang, N. C., Strausbauch, P. H., and Morahan, P. S., 1983, Differential effects of chronic monocyte depletion on macrophage populations, Lab. Invest. 49: 291–298.

    CAS  PubMed  Google Scholar 

  • Wahl, S. M., Hunt, D. A., Bansal, G., McCartney-Francis, N., Ellingsworth, L., and Allen, J. B., 1988, Bacterial cell wall-induced immunosuppression. Role of transforming growth factor ß, J. Exp. Med. 168: 1403–1417.

    CAS  CrossRef  Google Scholar 

  • Wake, K., Decker, K., Kirn, A., Knook, D. L., McCuskey, R. S., Bouwens, L., and Wisse, E., 1989, Cell biology and kinetics of Kupffer cells in the liver, Int. Rev. Cytol. 118: 173–229.

    CAS  PubMed  CrossRef  Google Scholar 

  • Walker, W. S., 1982, Macrophage functional heterogeneity. Adv. Exp. Med. Biol. 155: 435–441.

    CAS  PubMed  CrossRef  Google Scholar 

  • Walker, W. S., 1987, Origins of macrophage diversity: Functional and phenotypic analysis of cloned populations of mouse splenic macrophages, Cell. Immunol. 107: 417–432.

    CAS  PubMed  CrossRef  Google Scholar 

  • Walker, W. S., 1989, Differential antigen presentation by cloned populations of mouse splenic macrophages, J. Immunol. 143: 2142–2145.

    CAS  PubMed  Google Scholar 

  • Walker, W. S., and Hester, R. B., 1983, The functional heterogeneity of macrophages, in The Reticuloendothelial System (J. A. Bellanti and H. B. Herscowitz, eds.), pp. 27–42, Plenum Press, New York.

    Google Scholar 

  • Walker, W. S., and Sun, D., 1991, Constitutive antigen presentation by mouse splenic macrophages is restricted to the progeny of a distinct progenitor population, Cell. Immunol. 133: 342–351.

    CAS  PubMed  CrossRef  Google Scholar 

  • Walker, E. B., Akporiaye, E. T., Warner, N. L., and Stewart, C. C., 1985, Characterization of subsets of bone marrow-derived macrophages by flow cytometry analysis, J. Leukocyte Biol. 37: 121–136.

    CAS  PubMed  Google Scholar 

  • Warfel, A. H., and Zucker-Franklin, D., 1986, Down-regulation of macrophage lysozyme by lipopolysaccharide and interferon, J. Immunol. 137: 651–655.

    CAS  PubMed  Google Scholar 

  • Warner, N. L., Moore, M. A. S., and Metcalf, D., 1969, A transplantable myelomonocytic leukemia in BALB/c mice: Cytology, karyotype and muramidase content, J. Natl. Cancer Inst. 43: 963–982.

    CAS  PubMed  Google Scholar 

  • Watanabe, Y., and Jacob, C. O., 1991, Regulation of MHC class II antigen expression. Opposing effects of tumor necrosis factor-a on IFN-y induced HLA-DR and Ia expression depends on the maturation and differentiation stage of the cell, J. Immunol. 146: 899–905.

    CAS  PubMed  Google Scholar 

  • Watt, S. M., Gilmore, D. J., Metcalf, D., Cobbold, S. P., Hoang, T. K., and Waldmann, H., 1983, Segregation of mouse hemopoietic progenitor cells using the monoclonal antibody, YBM/42, J. Cell. Physiol. 115: 37–45.

    CAS  PubMed  CrossRef  Google Scholar 

  • Weaver, C. T., and Unanue, E. R., 1990, The costimulatory function of antigen-presenting cells, Immunol. Today 11: 49–55.

    CAS  PubMed  CrossRef  Google Scholar 

  • Weinberg, E. D., 1990, Cellular iron metabolism in health and disease, Drug Metab. Rev. 22:531–579. Williams, G. T., and Williams, W. J., 1983, Granulomatous inflammation—a review, J. Clin. Pathol. 36: 723–733.

    Google Scholar 

  • Wing, E. J., Gardner, I. D., Ryning, F. W., and Remington, J. S., 1977, Dissociation of effector functions in populations of activated macrophages, Nature 268: 642–644.

    CAS  PubMed  CrossRef  Google Scholar 

  • Wing, E. J., Krahenbuhl, J. L., and Remington, J. S., 1979, Studies of macrophage function during Trichinella spiralis infection in mice, Immunol. 36: 479–485.

    CAS  Google Scholar 

  • Witmer, M. D., and Steinman, R. M., 1984, The anatomy of peripheral lymphoid organs with emphasis on accessory cells: Light-microscopic immunocytochemical studies of mouse spleen, lymph node, and Peyer’s patch, Am. J. Anat. 170: 465–481.

    CAS  PubMed  CrossRef  Google Scholar 

  • Witsell, A. L., and Schook, L. B., 1991, Macrophage heterogeneity occurs through a developmental mechanism, Proc. Natl. Acad. Sci. USA 88: 1963–1967.

    CAS  PubMed  CrossRef  Google Scholar 

  • Wong, A. K.-Y., Bunce, C. M., Lord, J. M., Salt, J., and Brown, G., 1989, Evidence that precursor cells of monocytes and B-lymphocytes are closely related, Exp. Hematol. 17: 968–973.

    CAS  PubMed  Google Scholar 

  • Woo, H.-J., Shaw, L. M., Messier, J. M., and Mercurio, A. M., 1990, The major non-integrin laminin binding protein of macrophages is identical to carbohydrate binding protein 35 (Mac-2), J. Biol. Chem. 265: 7097–7099.

    CAS  PubMed  Google Scholar 

  • Wunder, E., Sowala, H., Lepers, M., and Henon, Ph., 1990, The role of monocytes/macrophages in blood stem cell maturation studies with highly purified precursor (CD34+) cells, Bone Marrow Transplant. 5 (Suppl. 1): 11–12.

    PubMed  Google Scholar 

  • Yamada, M., Naito, M., and Takahashi, K., 1990, Kupffer cell proliferation and glucan-induced granuloma formation in mice depleted of blood monocytes by strontium-89, J. Leukocyte Biol. 47: 195–205.

    CAS  PubMed  Google Scholar 

  • Yasaka, T., Mantich, N. M., Boxer, L. A., and Baehner, R. L., 1981, Functions of human monocyte and lymphocyte subsets obtained by countercurrent centrifugal elutriation: Differing functional capacities of human monocyte subsets, J. Immunol. 127: 1515–1518.

    CAS  PubMed  Google Scholar 

  • Zerlauth, G., Eibl, M. M., and Mannhalter, J. W., 1991, Induction of anti-mycobacterial and anti-listerial activity of human monocytes requires different activation signals, Clin. Exp. Immunol. 85: 90–97.

    CAS  PubMed  CrossRef  Google Scholar 

  • Ziegler-Heitbrock, H. W. L., Passlick, B., and Flieger, D., 1988, The monoclonal antimonocyte antibody My4 stains B lymphocytes and two distinct monocyte subsets in human peripheral blood, Hybridoma 7: 521–527.

    CAS  PubMed  CrossRef  Google Scholar 

  • Ziegler-Heitbrock, H. W. L., Ströbel, M., Fingerle, G., Schlunck, T., Pforte, A., Blumenstein, M., and Haas, J. G., 1991, Small (CD!4+/CD 16+) monocytes and regular monocytes in human blood, Pathobiology 59: 127–130.

    CAS  PubMed  CrossRef  Google Scholar 

  • Zwadlo, G., Bröcker, E.-B., Von Bassewitz, D.-B., Feige, U., and Sorg, C., 1985, A monoclonal antibody to a differentiation antigen present on mature human macrophages and absent from monocytes, J. Immunol. 134: 1487–1492.

    CAS  PubMed  Google Scholar 

  • Zwadlo, G., Schlegel, R., and Sorg, C., 1986, A monoclonal antibody to a subset of human monocytes found only in the peripheral blood and inflammatory tissues, J. Immunol. 137: 512–518.

    CAS  PubMed  Google Scholar 

  • Zwadlo, G., Voegeli, R., Schulze Osthoff, K., and Sorg, C., 1987, A monoclonal antibody to a novel differentiation antigen on human macrophages associated with the down-regulatory phase of the inflammatory process, Exp. Cell Biol. 55: 295–304.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leenen, P.J.M., Campbell, P.A. (1993). Heterogeneity of Mononuclear Phagocytes. In: Horton, M.A. (eds) Macrophages and Related Cells. Blood Cell Biochemistry, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9534-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9534-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9536-3

  • Online ISBN: 978-1-4757-9534-9

  • eBook Packages: Springer Book Archive