Heterogeneity of Mononuclear Phagocytes

An Interpretive Review
  • Pieter J. M. Leenen
  • Priscilla A. Campbell
Part of the Blood Cell Biochemistry book series (BLBI, volume 5)


In this chapter we would like to review evidence supporting the concept that there is extensive heterogeneity of mammalian mononuclear phagocytes. Given the limits of this chapter, we will summarize data supporting this notion rather than provide an in-depth review of particular characteristics and functions of these cells. Therefore, the main subjects will be the mononuclear phagocyte system as a whole and the heterogeneous features of the various members of the system expressed both phenotypically and functionally. Finally, we will discuss various models that may explain how mononuclear phagocyte heterogeneity is generated (see also Chapter 3, this volume).


Migration Inhibitory Factor Mononuclear Phagocyte Bone Marrow Culture Mononuclear Phagocyte System Milky Spot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abney, E. R., Bartlett, P. P., and Raff, M. C., 1981, Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain, Dev. Biol. 83: 301–310.PubMedCrossRefGoogle Scholar
  2. Adams, D. O., and Hamilton, T. A., 1984, The cell biology of macrophage activation, Annu. Rev. Immunol. 2: 283–318.PubMedCrossRefGoogle Scholar
  3. Adams, D. O., and Hamilton, T. A., 1986, Regulation of macrophage activation at the molecular level, Ann. Inst. Pasteur 137C: 229–234.CrossRefGoogle Scholar
  4. Adams, D. O., and Hamilton, T. A., 1989, The activated macrophage and granulomatous inflammation, Curr. Top. Pathol. 79: 151–167.PubMedCrossRefGoogle Scholar
  5. Adams, L. B., Hibbs, J. B., Jr., Taintor, R. R., and Krahenbuhl, J. L., 1990, Microbiostatic effect of murine activated macrophages for Toxoplasma gondii. Role of synthesis of inorganic nitrogen oxides from L-arginine, J. Immunol. 144: 2725–2729.PubMedGoogle Scholar
  6. Akiyama, Y., Miller, P. J., Thurman, G. B., Neubauer, R. H., Oliver, C., Favilla, T., Beman, J. A., Oldham, R. K., and Stevenson, H. C., 1983, Characterization of a human blood monocyte subset with low peroxidase activity, J. Clin. Invest. 72: 1093–1105.PubMedCrossRefGoogle Scholar
  7. Akiyama, Y., Stevenson, G. W., Schlick, E., Matsushima, K., Miller, P. J., and Stevenson, H. C., 1985, Differential ability of human blood monocyte subsets to release various cytokines, J. Leukocyte Biol. 37: 519–530.PubMedGoogle Scholar
  8. Albina, J. E., Abate, J. A., and Henry, W. L., 1991, Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation. Role of IFN-y in the induction of the nitric oxide-synthesizing pathway. J. Immunol. 147: 144–148.PubMedGoogle Scholar
  9. Allaerts, W., Carmeliet, P., and Denef, C., 1990, New perspectives in the function of pituitary folliculostellate cells, Mol. Cell. Endocrinol. 71: 73–81.PubMedCrossRefGoogle Scholar
  10. Allison, A. C., 1978, Mechanisms by which activated macrophages inhibit lymphocyte responses, Immunol. Rev. 40: 3–27.PubMedCrossRefGoogle Scholar
  11. Al-Ramadi, B. K., Brodkin, M. A., Mosser, D. M., and Eisenstein, T. K., 1991a, Immunosuppression induced by attenuated Salmonella. Evidence for mediation by macrophage precursors, J. Immunol. 146: 2737–2746.PubMedGoogle Scholar
  12. Al-Ramadi, B. K., Chen, Y.-W., Meissler, J. J., and Eisenstein, T. K., 1991b, Immunosuppression induced by attenuated Salmonella. Reversal by IL-4, J. Immunol. 147: 1954–1961.PubMedGoogle Scholar
  13. Alterman, L. A., Crispe, I. N., and Kinnon, C., 1990, Characterization of the murine heat-stable antigen: An hematolymphoid differentiation antigen defined by the J1 l d, M1/69 and B2A2 antibodies, Eur. J. Immunol. 20: 1597–1602.PubMedCrossRefGoogle Scholar
  14. Andreesen, R., Bross, K. J., Osterholz, J., and Emmrich, F., 1986, Human macrophage maturation and heterogeneity: Analysis with a newly generated set of monoclonal antibodies to differentiation antigens, Blood 67: 1257–1264.PubMedGoogle Scholar
  15. Andreesen, R., Brugger, W., Scheibenbogen, C., Kreutz, M., Leser, H.-G., Rehm, A., and Löhr, G. W., 1990, Surface phenotype analysis of human monocyte to macrophage maturation, J. Leukocyte Biol. 47: 490–497.PubMedGoogle Scholar
  16. Aschoff, L., 1924, Das reticulo-endotheliale system, Ergebn. Inn. Med. Kinderheilk. 26:1–118. Austyn, J. M., 1987, Lymphoid dendritic cells, Immunology 62: 161–170.Google Scholar
  17. Austyn, J. M., and Gordon, S., 1981, F4/80, a monoclonal antibody directed specifically against the mouse macrophage, Eur. J. Immunol. 11: 805–815.PubMedCrossRefGoogle Scholar
  18. Babcock, G. F., Amoscato, A. A., and Nishioka, K., 1983, Effect of tuftsin on the migration, chemotaxis, and differentiation of macrophages and granulocytes, Ann. N. Y. Acad. Sci. 419: 64–74.PubMedCrossRefGoogle Scholar
  19. Baccarini, M., Bistoni, F., and Lohmann-Matthes, M.-L., 1985, In vitro natural cell-mediated cytotoxicity against Candida albicans: Macrophage precursors as effector cells, J. Immunol. 134: 2658–2665.Google Scholar
  20. Baccarini, M., Kiderlen, A. F., Decker, T., and Lohmann-Matthes, M.-L., 1986, Functional heterogeneity of murine macrophage precursor cells from spleen and bone marrow, Cell. Immunol. 101: 339–350.PubMedCrossRefGoogle Scholar
  21. Baccarini, M., Li, H., Decker, T., and Lohmann-Matthes, M.-L., 1988, Macrophage precursors as natural killer cells against tumor cells and microorganisms, Nat. Immun. Cell. Growth Regul. 7: 316–327.PubMedGoogle Scholar
  22. Bahr, G. M., and Chedid, L., 1986, Immunological activities of muramyl peptides, Fed. Proc. 45: 2541–2544.PubMedGoogle Scholar
  23. Bechard, D. E., Fisher, B. J., Kessler, F. K., Carchman, R. A., and Fowler, A. A., 1988, Macrophage spreading disparity: alveolar vs. peritoneal, J. Clin. Lab. Immunol. 26: 67–71.PubMedGoogle Scholar
  24. Beck, G., and Habicht, G. S., 1991, Primitive cytokines: Harbingers of vertebrate defense, Immunol. Today 12: 180–183.PubMedCrossRefGoogle Scholar
  25. Beelen, R. H. J., Fluitsma, D. M., and Hoefsmit, E. C. M., 1980, The cellular composition of omentum milky spots and the ultrastructure of milky spot macrophages and reticulum cells, J. Reticuloendothel. Soc. 28: 585–599.PubMedGoogle Scholar
  26. Benoist, C., and Mathis, D., 1990, Regulation of major histocompatibility complex class-II genes: X, Y and other letters of the alphabet, Annu. Rev. Immunol. 8: 681–715.PubMedCrossRefGoogle Scholar
  27. Berman, J. W., and Basch, R. S., 1985, Thy-1 antigen expression by murine hematopoietic precursor cells, Exp. Hematol. 13: 1152–1156.PubMedGoogle Scholar
  28. Bernard, J., 1991, The erythroblastic island: Past and future, Blood Cells 17: 5–14.PubMedGoogle Scholar
  29. Bernard, A., Boumsell, L., Dausset, J., Milstein, C., and Schlossman, S. F. (eds.), 1984, Leucocyte Typing. Human Leucocyte Differentiation Antigens Detected by Monoclonal Antibodies, Springer-Verlag, Berlin.Google Scholar
  30. Bethke, U., Kniep, B., and Mühlradt, P. F., 1987, Forssman glycolipid, an antigenic marker for a major subpopulation of macrophages from mutine spleen and peripheral lymph nodes, J. Immunol. 138: 4329–4335.PubMedGoogle Scholar
  31. Bhattacharya, A., Dorf, M. E., and Springer, T. A., 1981, A shared alloantigenic determinant on la antigens encoded by the I-A and I-E subregions: Evidence for I region gene duplication, J. Immunol. 127: 2488–2495.PubMedGoogle Scholar
  32. Blank, K. J., McKernan, L. N., and Murasko, D. M., 1985, Poly I:C or IFN-a/ß treatment inhibits macrophage induced T cell proliferation, J. Interferon Res. 5: 215–221.PubMedCrossRefGoogle Scholar
  33. Bogdan, C., Vodovotz, Y., and Nathan, C., 1991, Macrophage deactivation by interleukin 10, J. Exp. Med. 174: 1549–1555.PubMedCrossRefGoogle Scholar
  34. Boog, C. J. P., Neefjes, J. J., Boes, J., Ploegh, H. L., and Melief, C. J. M., 1989, Specific immune responses restored by alteration in carbohydrate chains of surface molecules on antigen-presenting cells, Eur. J. Immunol. 19: 537–542.PubMedCrossRefGoogle Scholar
  35. Boyd, A. W., and Schrader, J. W., 1982, Derivation of macrophage-like lines from the pre-B lymphoma ABLS 8.1 using 5-azacytidine, Nature (London) 297: 691–693.Google Scholar
  36. Breel, M., Mebius, R. E., and Kraal, G., 1987, Dendritic cells of the mouse recognized by two monoclonal antibodies, Eur. J. Immunol. 17: 1555–1559.PubMedCrossRefGoogle Scholar
  37. Bretscher, P., 1992, The two-signal model of lymphocyte activation twenty-one years later, Immunol. Today 13: 74–76.PubMedCrossRefGoogle Scholar
  38. Brown, E. J., 1986, The interactions of connective tissue proteins with phagocytic cells, J. Leukocyte Biol. 39: 579–591.PubMedGoogle Scholar
  39. Brown, E. J., 1991, Complement receptors and phagocytosis, Curr. Opin. Immunol. 3: 76–82.PubMedCrossRefGoogle Scholar
  40. Broxmeyer, H. E., Sherry, B., Lu, L., Cooper, S., Carow, C., Wolpe, S. D., and Cerami, A., 1989, Myelopoietic enhancing effects of murine macrophage inflammatory proteins 1 and 2 on colony formation in vitro by mutine and human bone marrow granulocyte/macrophage progenitor cells, J. Exp. Med. 170: 1583–1594.PubMedCrossRefGoogle Scholar
  41. Buckley, P. J., Smith, M. R., Braverman, M. F., and Dickson, S. A., 1987, Human spleen contains phenotypic subsets of macrophages and dendritic cells that occupy discrete microanatomic locations, Am. J. Pathol. 128: 505–520.PubMedGoogle Scholar
  42. Burnet, F. M., 1970, Immunological Surveillance, Pergamon Press, Oxford.Google Scholar
  43. Bursuker, I., and Goldman, R., 1982, Distinct bone marrow precursors for mononuclear phagocytes expressing high and low 5’-nucleotidase activity, J. Cell. Physiol. 112: 237–242.PubMedCrossRefGoogle Scholar
  44. Bursuker, I., and Goldman, R., 1983, On the origin of macrophage heterogeneity: A hypothesis, J. Reticuloendothel. Soc. 33: 207–220.PubMedGoogle Scholar
  45. Bursuker, I., Rhodes, J. M., and Goldman, R., 1982, ß-Galactosidase—an indicator of the maturational stage of mouse and human mononuclear phagocytes, J. Cell. Physiol. 112: 385–390.PubMedCrossRefGoogle Scholar
  46. Callard, R. E., 1989, Cytokine regulation of B-cell growth and differentiation, Br. Med. Bull. 45: 371–388.PubMedGoogle Scholar
  47. Campbell, P. A., Czuprynski, C. J., and Cook, J. L., 1984, Differential expression of macrophage effector functions: Bactericidal versus tumoricidal activities, J. Leukocyte Biot. 36: 293–306.Google Scholar
  48. Campbell, P. A., Canono, B. P., and Cook, J. L., 1988, Mouse macrophages stimulated by recombinant gamma interferon to kill tumor cells are not bactericidal for the facultative intracellular bacterium Listeria monocytogenes, Infect. Immun. 56: 1371–1375.PubMedGoogle Scholar
  49. Carlos, T. M., and Harlan, J. M., 1990, Membrane proteins involved in phagocyte adherence to endothelium, Immunol. Rev. 114: 5–28.PubMedCrossRefGoogle Scholar
  50. Chen, J. W., Murphy, T. L., Willingham, M. C., Pastan, I., and August, J. T., 1985, Identification of two lysosomal membrane glycoproteins, J. Cell Biot. 101: 85–95.CrossRefGoogle Scholar
  51. Cherayil, B. J., Weiner, S. J., and Pillai, S., 1989, The Mac-2 antigen is a galactose-specific lectin that binds IgE, J. Exp. Med. 170: 1959–1972.PubMedCrossRefGoogle Scholar
  52. Chung, L. P., Keshav, S., and Gordon, S., 1988, Cloning of the human lysozyme eDNA: Inverted Alu repeat in the mRNA and in situ hybridization for macrophages and Paneth cells, Proc. Natl. Acad. Sci. USA 85: 6227–6231.PubMedCrossRefGoogle Scholar
  53. Cianciolo, G. J., 1986, Antiinflammatory proteins associated with human and murine neoplasms, Biochim. Biophys. Acta 865: 69–82.Google Scholar
  54. Cline, M. J., and Moore, M. A. S., 1972, Embryonic origin of the mouse macrophage, Blood 39: 842–849.PubMedGoogle Scholar
  55. Cohn, Z. A., 1978, The activation of mononuclear phagocytes: Fact, fancy, and future, J. Immunol. 121: 813–816.PubMedGoogle Scholar
  56. Cohn, Z. A., and Steinman, R. M., 1982, Phagocytosis and fluid-phase pinocytosis, Ciba Found. Svmp. 92: 15–34.Google Scholar
  57. Cohn, Z. A., Hirsch, J. G., and Fedorko, M. E., 1966, The in vitro differentiation of mononuclear phagocytes. IV. The ultrastructure of macrophage differentiation in the peritoneal cavity and in culture, J. Exp. Med. 123: 747–756.PubMedCrossRefGoogle Scholar
  58. Collins, S. J., 1987, The HL-60 promyelocytic leukemia cell line: Proliferation, differentiation, and cellular oncogene expression, Blood 70: 1233–1244.PubMedGoogle Scholar
  59. Colombatti, A., Hughes, E. N., Taylor, B. A., and August, J. T., 1982, Gene for a major cell surface glycoprotein of mouse macrophages and other phagocytic cells is on chromosome 2, Proc. Natl. Acad. Sci. USA 79: 1926–1929.PubMedCrossRefGoogle Scholar
  60. Coonrod, J. D., and Yoneda, K., 1983, Effect of rat alveolar lining material on macrophage receptors, J. Immunol. 130: 2589–2596.PubMedGoogle Scholar
  61. Cooper, E. L., 1976, Evolution of blood cells, Ann. Immunol. 127: 817–825.Google Scholar
  62. Cox, G. W., Mathieson, B. J., Giardina, S. L., and Varesio, L., 1990, Characterization of IL-2 receptor expression and function on murine macrophages, J. Immunol. 145: 1719–1726.PubMedGoogle Scholar
  63. Crocker, P. R., and Gordon, S., 1985, Isolation and characterization of resident stromal macrophages and hematopoietic cell clusters from mouse bone marrow, J. Exp. Med. 162: 993–1014.PubMedCrossRefGoogle Scholar
  64. Crocker, P. R., and Gordon, S., 1986, Properties and distribution of a lectin-like hemagglutinin differentially expressed by murine stromal tissue macrophages, J. Exp. Med. 164: 1862–1875.PubMedCrossRefGoogle Scholar
  65. Crocker, P. R., and Gordon, S., 1989, Mouse macrophage hemagglutinin (sheep erythrocyte receptor) with specificity for sialylated glycoconjugates characterized by a monoclonal antibody, J. Exp. Med. 169: 1333–1346.PubMedCrossRefGoogle Scholar
  66. Crocker, P. R., Morris, L., and Gordon, S., 1988, Novel cell surface adhesion receptors involved in interactions between stromal macrophages and haematopoietic cells, J. Cell Sci. Suppl. 9: 185–206.PubMedGoogle Scholar
  67. Crocker, P. R., Werb, Z., Gordon, S., and Bainton, D. F., 1990, Ultrastructural localization of a macrophage-restricted sialic acid binding hemagglutinin, SER, in macrophage-hematopoietic cell clusters, Blood 76: 1131–1138.PubMedGoogle Scholar
  68. Crocker, P. R., Kelm, S., Dubois, C., Martin, B., McWilliam, A. S., Shotton, D. M., Paulson, J. C., and Gordon, S., 1991, Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages, EMBO J. 10: 1661–1669.PubMedGoogle Scholar
  69. Cross, M., Mangelsdorf, I., Wedel, A., and Renkawitz, R., 1988, Mouse lysozyme M gene: Isolation, characterization, and expression studies, Proc. Natl. Acad. Sci. USA 85: 6232–6236.PubMedCrossRefGoogle Scholar
  70. Cutler, J. E., Brawner, D. L., Hazen, K. C., and Jutila, M. A., 1990, Characteristics of Candida albicans adherence to mouse tissues, Infect. Immun. 58: 1902–1908.PubMedGoogle Scholar
  71. Daems, W. T., and De Bakker, J. M., 1982, Do resident macrophages proliferate? Immunobiology 161: 204–211.PubMedCrossRefGoogle Scholar
  72. Davidson, W. F., Pierce, J. H., Rudikoff, S., and Morse, H. C., III, 1988, Relationships between B cell and myeloid differentiation. Studies with a B lymphocyte progenitor line, HAFTL-1, J. Exp. Med. 168: 389–407.PubMedCrossRefGoogle Scholar
  73. Davies, P., and Allison, A. C., 1976, Secretion of macrophage enzymes in relation to the pathogenesis of chronic inflammation, in Immunobiology of the Macrophage, ( D. S. Nelson, ed.), pp. 427–461, Academic Press, New York.Google Scholar
  74. Davies, P., and Maclntyre, D. E., 1992, Prostaglandins and inflammation, in Inflammation: Basic Principles and Clinical Correlates, Second Edition ( J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds.), pp. 123–138, Raven Press, New York.Google Scholar
  75. Davies, R., and Erdogdu, G., 1989, Secretion of fibronectin by mineral dust-derived alveolar macrophages and activated peritoneal macrophages, Exp. Lung Res. 15: 285–297.PubMedCrossRefGoogle Scholar
  76. Davignon, D., Martz, E., Reynolds, T., Kürzinger, K., and Springer, T. A., 1981, Lymphocyte function-associated antigen 1 (LFA-1): A surface antigen distinct from Lyt-2,3 that participates in T lymphocyte-mediated killing, Proc. Natl. Acad. Sci. USA 78: 4535–4539.PubMedCrossRefGoogle Scholar
  77. De Both, N. J., Hagemeijer, A., Rhijnsburger, E. H., Vermey, M., Van’t Hull, E., and Smit, E. M. E., 1981, DMSO-induced terminal differentiation and trisomy 15 in myeloid cell line transformed by the Rauscher murine leukemia virus, Cell Differ. 10: 13–21.PubMedCrossRefGoogle Scholar
  78. Decker, T., Baccarini, M., and Lohmann-Matthes, M.-L., 1986, Liver-associated macrophage precursors as natural cytotoxic effectors against Candida albicans and Yac-1 cells, Eur. J. Immunol. 16: 693–699.PubMedCrossRefGoogle Scholar
  79. Deimann, W., and Fahimi, H. D., 1978, Peroxidase cytochemistry and ultrastructure of resident macrophages in fetal rat liver. A developmental study, Dey. Biol. 66: 43–56.CrossRefGoogle Scholar
  80. Deiss, A., 1983, Iron metabolism in reticuloendothelial cells, Semin. Hematol. 20: 81–90.PubMedGoogle Scholar
  81. De Jong, J. P., Nikkels, P. G. J., Piersma, A. H., and Ploemacher, R. E., 1987, Erythropoiesis and macrophage subsets in medullary and extramedullary sites, in Molecular and Cellular Aspects ofErythropoietin and Erythropoiesis (I. N. Rich, ed.), pp. 237–258, NATO ASI Series Vol. H8, Springer-Verlag, Berlin.Google Scholar
  82. De Jong, J. P., Voerman, J. S. A., Van der Sluijs-Gelling, A. J., Willemsen, R., and Ploemacher, R. E., 1990a, A monoclonal antibody (ER-HR3) against murine macrophages. I. Ontogeny, distribution, and enzyme histochemical characterization of ER-HR3-positive cells, in Localization and phenotypical characterization of murine macrophages (J. P. De Jong, Thesis), pp. 117–132, Erasmus University, Rotterdam, The Netherlands.Google Scholar
  83. De Jong, J. P., Leenen, P. J. M., Voerman, J. S. A., Van der Sluijs-Gelling, A. J., and Ploemacher, R. E., 1990b, A monoclonal antibody (ER-HR3) against murine macrophages. II. Purification and functional aspects of the ER-HR3 antigen, in Localization and phenotypical characterization of murine macrophages (J. P. De Jong, Thesis), pp. 133–149, Erasmus University, Rotterdam, The Netherlands.Google Scholar
  84. De Jong, J. P., Leenen, P. J. M., Melis, M., Voerman, J. S. A., and Van Ewijk, W., 1990c, Immunophenotypical characterization of macrophage and dendrocyte subpopulations in the murine spleen, in Localization and phenotypical characterization of murine macrophages (J. P. De Jong, Thesis), pp. 73–84, Erasmus University, Rotterdam, The Netherlands.Google Scholar
  85. Detmers, P. A., and Wright, S. D., 1988, Adhesion-promoting receptors on leukocytes, Curr. Opin. Immunol. 1: 10–15.PubMedCrossRefGoogle Scholar
  86. De Waal Malefyt, R., Abrams, J., Bennett, B., Figdor, C. G., and De Vries, J. E., 1991, Interleukin 10 (IL-10) inhibits cytokine synthesis by human’monocytes: An autoregulatory role of IL-10 produced by monocytes, J. Exp. Med. 174: 1209–1220.CrossRefGoogle Scholar
  87. Dexter, T. M., Wright, E. G., Krizsa, F., and Lajtha, L. G., 1977, Regulation of haemopoietic stem cell proliferation in long term bone marrow cultures, Biomedicine 27: 344–349.PubMedGoogle Scholar
  88. Dialynas, D. P., Wilde, D. B., Marrack, P., Pierres, A., Wall, K. A., Havran, W., Otten, G., Loken, M. R., Pierres, M., Kappler, J., and Fitch, F. W., 1983, Characterization of the murine antigenic determinant, designated L3T4a, recognized by monoclonal antibody GK1.5: Expression of L3T4a by functional T cell clones appears to correlate primarily with class II MHC antigen reactivity, Immunol. Rev. 74: 29–56.PubMedCrossRefGoogle Scholar
  89. Dijkstra, C. D., Van Vliet, E., DSpp, E. A., Van der Lely, A. A., and Kraal, G., 1985, Marginal zone macrophages identified by a monoclonal antibody: Characterization of immuno-and enzymehistochemical properties and functional capacities, Immunology 55: 23–30.PubMedGoogle Scholar
  90. Dorshkind, K., 1990, Regulation of hemopoiesis by bone marrow stromal cells and their products, Annu. Rev. Immunol. 8: 111–137.PubMedCrossRefGoogle Scholar
  91. Dougherty, G. J., and McBride, W. H., 1984, Macrophage heterogeneity, J Clin. Lab. Immunol. 14: 1–11.PubMedGoogle Scholar
  92. Douvas, G. S., Looker, D. L., Vatter, A. E., and Crowle, A. J., 1985, Gamma interferon activates human macrophages to become tumoricidal and leishmanicidal but enhances replication of macrophageassociated mycobacteria, Infect. Immun. 50: 1–8.PubMedGoogle Scholar
  93. Dransfield, I., Corcoran, D., Partridge, L. J., Hogg, N., and Burton, D. R., 1988, Comparison of human monocytes isolated by elutriation and adherence suggests that heterogeneity may reflect a continuum of maturation/activation states, Immunology 63: 491–498.PubMedGoogle Scholar
  94. Drevets, D. A., and Campbell, P. A., 1991, Roles of complement and complement receptor type 3 in phagocytosis of Listeria monocytogenes by inflammatory mouse peritoneal macrophages, Infect. Immun. 59: 2645–2652.PubMedGoogle Scholar
  95. Dumont, F. J., Coker, L. Z., Habbersett, R. C., and Treffinger, J. A., 1985, Xenogeneic monoclonal antibody to an Ly-6-linked murine cell surface antigen: Differential reactivity with T cell subpopulations and bone marrow cells. J. Immunol. 134: 2357–2365.PubMedGoogle Scholar
  96. Duvall, E., Wyllie, A. H., and Morris, R. G., 1985, Macrophage recognition of cells undergoing programmed cell death (apoptosis), Immunology 56: 351–358.PubMedGoogle Scholar
  97. El Rouby, S., Praz, F., Halbwachs-Mecarelli, L., and Papiernik, M., 1985, Thymic reticulum in mice. IV. The rosette formation between phagocytic cells of the thymic reticulum and cortical type thymocytes is mediated by complement receptor type three, J. Immunol. 134: 3625–3631.PubMedGoogle Scholar
  98. Eppell, B. A., Newell, A. M., and Brown, E. J., 1989, Adenosine receptors are expressed during differentiation of monocytes to macrophages in vitro. Implications for regulation of phagocytosis, J. Immunol. 143: 4141–4145.PubMedGoogle Scholar
  99. Esa, A. H., Noga, S. J., Donnenberg, A. D., and Hess, A. D., 1986, Immunological heterogeneity of human monocyte subsets prepared by counterflow centrifugation elutriation, Immunology 59: 95–99.PubMedGoogle Scholar
  100. Fadok, V. A., Voelker, D. R., Campbell, P. A., Cohen, J. J., Bratton, D. L., and Henson, P. M., 1992a, Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages, J. Immunol. 148: 2207–2216.PubMedGoogle Scholar
  101. Fadok, V. A., Savill, J. S., Haslett, C. Bratton, D. L., Doherty, D. E., Campbell, P. A., and Henson, P. M., 1992b, Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells, J. Immunol. 149: 4029–4035.PubMedGoogle Scholar
  102. Falkenberg, U., Leenen, P. J. M., and Falkenberg, F. W., 1989, Characterization of mouse macrophage differentiation antigens by monoclonal antibodies, Cell. Immunol. 124: 77–94.PubMedCrossRefGoogle Scholar
  103. Figdor, C. G., Bont, W. S., Touw, I., De Roos, J., Roosnek, E. E., and De Vries, J. E., 1982, Isolation of functionally different human monocytes by counterflow centrifugal elutriation, Blood 60: 46–53.PubMedGoogle Scholar
  104. Finch, C. A., and Huebers, H., 1982, Perspectives in iron metabolism, N. Engl. J. Med. 306: 1520–1528.PubMedCrossRefGoogle Scholar
  105. Flesch, I. E. A., and Kaufmann, S. H. E., 1991, Mechanisms involved in mycobacterial growth inhibition by gamma interferon-activated bone marrow macrophages: Role of reactive nitrogen intermediates, Infect. Immun. 59: 3213–3218.PubMedGoogle Scholar
  106. Fogelman, A. M., Van Lenten, B. J., Warden, C., Haberland, M. E., and Edwards, P. A., 1988, Macrophage lipoprotein receptors, J. Cell Sci. Suppl. 9: 135–149.PubMedGoogle Scholar
  107. Fortier, A. H., Polsinelli, T., Green, S. J., and Nacy, C. A., 1992, Activation of macrophages for destruction of Francisella tularensis: identification of cytokines, effector cells, and effector molecules, Infect. Immun. 60: 817–825.PubMedGoogle Scholar
  108. Fossum, S., 1989, The life history of dendritic leukocytes (DL), Curr. Top. Pathol. 79: 101–124.PubMedCrossRefGoogle Scholar
  109. Fox, B. A., and Petty, H. R., 1984, Characterization of a monoclonal antibody defining a macrophage activation-specific cell surface antigen, Mol. Immunol. 21: 681–684.PubMedCrossRefGoogle Scholar
  110. Fredrickson, G. G., and Basch, R. S., 1989, L3T4 antigen expression by hemopoietic precursor cells, J. Exp. Med. 169: 1473–1478.CrossRefGoogle Scholar
  111. Gallatin, W. M., Weissman, I. L., and Butcher, E. C., 1983, A cell-surface molecule involved in organ-specific homing of lymphocytes, Nature (London) 304: 30–34.CrossRefGoogle Scholar
  112. Ganter, U., Bauer, J., Majello, B., Gerok, W., and Ciliberto, G., 1989, Characterization of mononuclear-phagocyte terminal maturation by mRNA phenotyping using a set of cloned cDNA probes, Eur. J. Biochem. 185: 291–296.PubMedCrossRefGoogle Scholar
  113. Gauldie, J., Richards, C., and Lamontagne, L., 1983, Fc receptors for IgA and other immunoglobulins on resident and activated alveolar macrophages, Mol. Immunol. 20: 1029–1037.PubMedCrossRefGoogle Scholar
  114. Geppert, T. D., Davis, L. S., Gur, H., Wacholtz, M. C., and Lipsky, P. E., 1990, Accessory cell signals involved in T-cell activation, Immunol. Rev. 117: 5–66.PubMedCrossRefGoogle Scholar
  115. Gieseler, R. K. H., Röber, R.-A., Kuhn, R., Weber, K., Osborn, M., and Peters, J. H., 1991, Dendritic accessory cells derived from rat bone marrow precursors under chemically defined conditions in vitro belong to the myeloid lineage, Eur. J. Cell Biol. 54: 171–181.PubMedGoogle Scholar
  116. Ginsel, L. A., Rijfkogel, L. P., and Daems, W. Th., 1985, A dual origin of macrophages? Review and hypothesis, in Macrophage Biology ( S. Reichard and M. Kojima, eds.), pp. 621–649, Alan R. Liss, New York.Google Scholar
  117. Gisler, R. H., Schlienger, C., Söderberg, A., Ledermann, F., and Lambris, J. D., 1988, Functional maturation of murine B lymphocyte precursors. III. Soluble factors involved in the regulation of growth and differentiation, Mol. Immunol. 25: 1113–1127.PubMedCrossRefGoogle Scholar
  118. Gordon, S., 1986, Biology of the macrophage, J. Cell Sci. Suppl. 4: 267–286.PubMedGoogle Scholar
  119. Gordon, S., and Hirsch, S., 1982, Differentiation antigens and macrophage heterogeneity, Adv. Exp. Med. Biol. 155: 391–400.PubMedCrossRefGoogle Scholar
  120. Gordon, S., Todd, J., and Cohn, Z. A., 1974, In vitro synthesis and secretion of lysozyme by mononuclear phagocytes, J. Exp. Med. 139: 1228–1248.PubMedCrossRefGoogle Scholar
  121. Gordon, S., Perry, V. H., Rabinowitz, S., Chung, L.-P., and Rosen, H., 1988a, Plasma membrane receptors of the mononuclear phagocyte system, J. Cell Sci. Suppl. 9: 1–26.PubMedGoogle Scholar
  122. Gordon, S., Keshav, S., and Chung, L. P., 1988b, Mononuclear phagocytes: Tissue distribution and functional heterogeneity, Curr. Opin. Immunol. 1: 26–35.PubMedCrossRefGoogle Scholar
  123. Gordon, S., Fraser, I., Nath, D., Hughes, D., and Clarke, S., 1992, Macrophages in tissues and in vitro, Curr. Opin. Immunol. 4: 25–32.PubMedCrossRefGoogle Scholar
  124. Gospodarowicz, D., Cheng, J., Ge-Ming, L., Baird, A., and Böhlent, P., 1984, Isolation of brain fibroblast growth factor by heparin-sepharose affinity chromatography: Identity with pituitary fibroblast growth factor, Proc. Natl. Acad. Sci. USA 81: 6963–6967.PubMedCrossRefGoogle Scholar
  125. Goud, T. J. L. M., and Van Furth, R., 1975, Proliferative characteristics of monoblasts grown in vitro, J. Exp. Med. 142: 1200–1217.PubMedCrossRefGoogle Scholar
  126. Goud, T. J. L. M., Schotte, C., and Van Furth, R., 1975, Identification and characterization of the mono-blast in mononuclear phagocyte colonies grown in vitro, J. Exp. Med. 142: 1180–1199.PubMedCrossRefGoogle Scholar
  127. Green, S. J., Meltzer, M. S., Hibbs, J. B., Jr., and Nacy, C. A., 1990, Activated macrophages destroy intracellular Leishmania major amastigotes by an L-argine-dependent killing mechanism, J. Immunol. 144: 278–283.PubMedGoogle Scholar
  128. Greenberger, J. S., 1991, The hematopoietic microenvironment, Crit. Rev. OncoL Hematol. 11: 65–84.PubMedCrossRefGoogle Scholar
  129. Griffin, F. M., Griffin, J. A., Leider, J. E., and Silverstein, S. C., 1975, Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane, J. Exp. Med. 142: 1263–1282.PubMedCrossRefGoogle Scholar
  130. Griffin, F. M., Griffin, J. A., and Silverstein, S. C., 1976, Studies on the mechanism of phagocytosis. II. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes, J. Exp. Med. 144: 788–809.PubMedCrossRefGoogle Scholar
  131. Haidaris, C. G., and Bonventre, P. F., 1981, Elimination of Leishmania donovani amastigotes by activated macrophages, Infect. Immun. 33: 918–926.PubMedGoogle Scholar
  132. Hampton, R. Y., Golenbock, D. T., Penman, M., Krieger, M., and Raetz, C. R. H., 1991, Recognition and plasma clearance of endotoxin by scavenger receptors, Nature (London) 352: 342–344.Google Scholar
  133. Hara, J., Kawa-Ha, K., Yumura-Yagi, K., Kurahashi, H., Tawa, A., Ishihara, S., Inoue, M., Murayama, N., and Okada, S., 1991, In vivo and in vitro expression of myeloid antigens on B-lineage acute lymphoblastic leukemia cells, Leukemia 5: 19–25.Google Scholar
  134. Hardy, R. R., and Hayakawa, K., 1991, A developmental switch in B lymphopoiesis, Proc. Natl. Acad. Sci. USA 88: 11550–11554.PubMedCrossRefGoogle Scholar
  135. Havell, E. A., 1987, Production of tumor necrosis factor during murine listeriosis, J. Immunol. 139: 4225–4231.PubMedGoogle Scholar
  136. Havran, W. L., and Allison, J. P., 1990, Origin of Thy-1+ dendritic epidermal cells of adult mice from fetal thymic precursors, Nature (London) 344: 68–70.Google Scholar
  137. Hestdal, K., Ruscetti, F. W., Ihle, J. N., Jacobsen, S. E. W., Dubois, C. M., Kopp, W. C., Longo, D. L., and Keller, J. R., 1991, Characterization and regulation of RB6–8C5 antigen expression on murine bone marrow cells, J. Immunol. 147: 22–28.PubMedGoogle Scholar
  138. Heyworth, C. M., Valiance, S. J., Whetton, A. D., and Dexter, T. M., 1990, The biochemistry and biology of the myeloid haemopoietic cell growth factors, J Cell Sci. 13: 57–74.Google Scholar
  139. Hibbs, J. B., Jr., Taintor, R. R., Chapman, H. A., Jr., and Weinberg, J. B., 1977, Macrophage tumor killing: Influence of the local environment, Science 197: 279–282.PubMedCrossRefGoogle Scholar
  140. Hirsch, S., and Gordon, S., 1983, Polymorphic expression of a neutrophil differentiation antigen revealed by monoclonal antibody 7/4, Immunogenetics 18: 229–239.PubMedCrossRefGoogle Scholar
  141. Hirsch, S., Austyn, J. M., and Gordon, S., 1981, Expression of the macrophage-specific antigen F4/80 during differentiation of mouse bone marrow cells in culture, J. Exp. Med. 154: 713–725.PubMedCrossRefGoogle Scholar
  142. Ho, M.-K., and Springer, T. A., 1982, Mac-2, a novel 32,000 M r mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies, J. Immunol. 128: 1221–1228.PubMedGoogle Scholar
  143. Ho, M.-K., and Springer, T. A., 1983, Tissue distribution, structural characterization, and biosynthesis of Mac-3, a macrophage surface glycoprotein exhibiting molecular weight heterogeneity. J. Biol. Chem. 258: 636–642.PubMedGoogle Scholar
  144. Hoefsmit, E. C. M., Duijvestijn, A. M., and Kamperdijk, E. W. A., 1982, Relation between Langerhans cells, veiled cells, and interdigitating cells, Immunobiology 161: 255–265.PubMedCrossRefGoogle Scholar
  145. Holmes, K. L., Langdon, W. Y., Fredrickson, T. N., Coffman, R. L., Hoffman, P. M., Hartley, J. W., and Morse, H. C., III, 1986, Analysis of neoplasms induced by Cas-Br-M MuLV tumor extracts, J. Immunol. 137: 679–688.PubMedGoogle Scholar
  146. Holt, P. G., Schon-Hegrad, M. A., and Oliver, J., 1988, MHC class II antigen-bearing dendritic cells in pulmonary tissues of the rat. Regulation of antigen presentation activity by endogenous macrophage populations, J. Exp. Med. 167: 262–274.PubMedCrossRefGoogle Scholar
  147. Horwitz, M. A., 1984, Phagocytosis of the Legionnaires’ disease bacterium (Legionella pneurnophila) occurs by a novel mechanism: Engulfment within a pseudopod coil, Cell 36: 27–33.PubMedCrossRefGoogle Scholar
  148. Hughes, T. K., Smith, E. M., Chin, R., Cadet, P., Sinisterra, J., Leung, M. K., Shipp, M. A., Scharrer, B., and Stefano, G. B., 1990, Interaction of immunoactive monokines (interleukin 1 and tumor necrosis factor) in the bivalve mollusc Mytilus edulis, Proc. Natl. Acad. Sci. USA 87: 4426–4429.PubMedCrossRefGoogle Scholar
  149. Hughes, T. K., Smith, E. M., Barnett, J. A., Charles, R., and Stefano, G. B., 1991, LPS stimulated inverte- brate hemocytes: A role for immunoreactive TNF and IL-1, Dev. Comp. Immunol. 15: 117–122.PubMedCrossRefGoogle Scholar
  150. Hume, D. A., Robinson, A. P., MacPherson, G. G., and Gordon, S., 1983, The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Relationship between macrophages, Langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs, J. Exp. Med. 158: 1522–1536.PubMedCrossRefGoogle Scholar
  151. Hunkapiller, T., and Hood, L., 1989, Diversity of the immunoglobulin gene superfamily, Adv. Immunol. 44: 1–63.PubMedCrossRefGoogle Scholar
  152. Ikuta, K., Kina, T., MacNeil, I., Uchida, N., Peault, B., Chien, Y.-H., and Weissman, I. L., 1990, A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells, Cell 62: 863–874.PubMedCrossRefGoogle Scholar
  153. Inamura, N., Sone, S., Okubo, A., Singh, S. M., and Ogura, T., 1990, Heterogeneity in responses of human blood monocytes to granulocyte-macrophage colony-stimulating factor, J. Leukocyte Biol. 47: 528–534.PubMedGoogle Scholar
  154. Jäättelä, M., 1991, Biologic activities and mechanisms of action of tumor necrosis factor-a/cachectin, Lab. Invest. 64: 724–742.PubMedGoogle Scholar
  155. Janossy, G., Bofill, M., Poulter, L. W., Rawlings, E., Burford, G. D., Navarrete, C., Ziegler, A., and Kelemen, E., 1986, Separate ontogeny of two macrophage-like accessory cell populations in the human fetus, J. Immunol. 136: 4354–4361.PubMedGoogle Scholar
  156. Jenkins, M. K., 1992, The role of cell division in the induction of clonal anergy, Immunol. Today 13: 69–73.PubMedCrossRefGoogle Scholar
  157. Johnson, W. J., Marino, P. A., Schreiber, R. D., and Adams, D. O., 1983, Sequential activation of murine mononuclear phagocytes for tumor cytolysis: Differential expression of markers by macrophages in the several stages of development, J. Immunol. 131: 1038–1043.PubMedGoogle Scholar
  158. Johnston, R. B., 1988, Monocytes and macrophages, N. Engl. J. Med. 318: 747–752.PubMedCrossRefGoogle Scholar
  159. Jutila, M. A., Kroese, F. G. M., Jutila, K. L., Stall, A. M., Fiering, S., Herzenberg, L. A., Berg, A. L., and Butcher, E. C., 1988, Ly-6C is a monocyte/macrophage and endothelial cell differentiation antigen regulated by interferon-gamma, Eur. J. Immunol. 18: 1819–1826.PubMedCrossRefGoogle Scholar
  160. Kabel, P. J., de Haan-Meulman, M., Voorbij, H. A. M., Kleingeld, M., Knol, E. F., and Drexhage, H. A., 1989, Accessory cells with a morphology and marker pattern of dendritic cells can be obtained from elutriator-purified blood monocyte fractions. An enhancing effect of metrizamide in this differentiation, Immunobiology 179: 395–411.PubMedCrossRefGoogle Scholar
  161. Kagami, M., Funatsu, Y., and Suzuki, T., 1989, Production and characterization of monoclonal antibodies to Fcry2a-binding protein isolated from the detergent lysate of a murine macrophagelike cell line, P388D,, J. Leukocyte Biol. 45: 311–321.PubMedGoogle Scholar
  162. Kantor, A. B., 1991, The development and repertoire of B-1 cells (CD5 B cells), Immunol. Today 12: 389–391.PubMedCrossRefGoogle Scholar
  163. Kargi, H. A., Campbell, E. J., and Kuhn, C., III, 1990, Elastase and cathepsin G of human monocytes: Heterogeneity and subcellular localization to peroxidase-positive granules, J. Histochem. Cytochem. 38: 1179–1186.PubMedCrossRefGoogle Scholar
  164. Katoh, S., Tominaga, A., Migita, M., Kudo, A., and Takatsu, K., 1990, Conversion of normal Ly-1positive B-lineage cells into Ly-l-positive macrophages in long-term bone marrow cultures, Dev. Immunol. 1: 113–125.PubMedCrossRefGoogle Scholar
  165. Katz, D. R., 1988, Antigen presentation, antigen-presenting cells and antigen processing, Curr. Opin. Immunol. 1: 213–219.PubMedCrossRefGoogle Scholar
  166. Katz, H. R., Benson, A. C., and Austen, K. F., 1989, Activation and phorbol ester-stimulated phosphorylation of a plasma membrane glycoprotein antigen expressed on mouse IL-3-dependent mast cells and serosal mast cells, J. Immunol. 142: 919–926.PubMedGoogle Scholar
  167. Keshav, S., Chung, L.-P., and Gordon, S., 1990, Macrophage products in inflammation, Diagn. Microbiol. Infect. Dis. 13: 439–447.PubMedCrossRefGoogle Scholar
  168. Keshav, S., Chung, L.-P., Milon, G., and Gordon, S., 1991, Lysozyme is an inducible marker of macrophage activation in murine tissues as demonstrated by in situ hybridization, J. Exp. Med. 174: 1049–1058.PubMedCrossRefGoogle Scholar
  169. Kinashi, T., Tashiro, K., Inaba, K., Takeda, T., Palacios, R., and Honjo, T., 1989, An interleukin-4-dependent precursor clone is an intermediate of the differentiation pathway from an interleukin-3-dependent precursor clone into myeloid cells as well as B lymphocytes, Int. Immunol. 1: 11–19.PubMedCrossRefGoogle Scholar
  170. Kincade, P. W., 1990, The lymphopoietic microenvironment in bone marrow, Adv. Cancer Res. 54: 235–272.PubMedCrossRefGoogle Scholar
  171. Kinet, J.-P., 1989, Antibody-cell interactions: Fc receptors, Cell 57: 351–354.PubMedCrossRefGoogle Scholar
  172. King, P. D., and Katz, D. R., 1990, Mechanism of dendritic cell function, Immunol. Today 11: 206–211.PubMedCrossRefGoogle Scholar
  173. Kipps, T. J., 1989, The CD5 B cell, Adv. Immunol. 47: 117–185.PubMedCrossRefGoogle Scholar
  174. Kleist, R., Schmitt, E., Westermann, J., and Mühlradt, P. F., 1990, Modulation of Forssman glycosphingolipid expression by murine macrophages: Coinduction with class II MHC antigen by the lymphokines IL4 and IL6, Immunobiology 180: 405–418.CrossRefGoogle Scholar
  175. Knapp, W., Dörken, B., Rieber, E. P., Stein, H., Gilks, W. R., Schmidt, R. E., and Von dem Borne, A. E. G. K. (eds.), 1989, Leucocyte Typing IV. White Cell Differentiation Antigens, Oxford University Press, Oxford.Google Scholar
  176. Kodama, T., Freeman, M., Rohrer, L., Zabrecky, J., Matsudaira, P., and Krieger, M., 1990, Type I macrophage scavenger receptor contains a-helical and collagen-like coiled coils, Nature (London) 343: 531–535.Google Scholar
  177. Koestler, T. P., Rieman, D., Muirhead, K., Greig, R. G., and Poste, G., 1984, Identification and characterization of a monoclonal antibody to an antigen expressed on activated macrophages, Proc. Natl. Acad. Sci. USA 81: 4505–4509.PubMedCrossRefGoogle Scholar
  178. Koestler, T. P., Badger, A. M., Rieman, D. J., Greig, R., and Poste, G., 1985, Induction by immunomodulatory agents of a macrophage antigen recognized by monoclonal antibody 158.2 and correlation with macrophage function, Cell Immunol. 96: 113–125.PubMedCrossRefGoogle Scholar
  179. Koo, G. C., and Peppard, J. R., 1984, Establishment of monoclonal anti-Nk-1.1 antibody, Hybridoma 3: 301–303.PubMedCrossRefGoogle Scholar
  180. Kosco, M. H., 1991, Antigen presentation to B cells, Curr. Opin. Immunol. 3: 336–339.PubMedCrossRefGoogle Scholar
  181. Kraal, G., and Janse, M., 1986, Marginal metallophilic cells of the mouse spleen identified by a monoclonal antibody, Immunology 58: 665–669.PubMedGoogle Scholar
  182. Kraal, G., Bred, M., Janse, M., and Bruin, G., 1986, Langerhans’ cells, veiled cells, and interdigitating cells in the mouse recognized by a monoclonal antibody, J. Exp. Med. 163: 981–997.PubMedCrossRefGoogle Scholar
  183. Kraal, G., Rep, M., and Janse, M., 1987, Macrophages in T and B cell compartments and other tissue macrophages recognized by monoclonal antibody MOMA-2, Scand. J. Immunol. 26: 653–661.PubMedCrossRefGoogle Scholar
  184. Kraal, G., Janse, M., and Claassen, E., 1988, Marginal metallophilic macrophages in the mouse spleen: Effects of neonatal injections of MOMA-1 antibody on the humoral immune response. Immunol. Lett. 17: 139–144.PubMedCrossRefGoogle Scholar
  185. Kraal, G., Ter Hart, H., Meelhuizen, C., Venneker, G., and Claassen, E., 1989, Marginal zone macrophages and their role in the immune response against T-independent type 2 antigens: Modulation of the cells with specific antibody, Eur. J. Immunol. 19: 675–680.PubMedCrossRefGoogle Scholar
  186. Kung, J. T., Sharrow, S. O., Ahmed, A., Habbersett, R., Scher, I., and Paul, W. E., 1982, B lymphocyte subpopulation defined by a rat monoclonal antibody, 14G8, J. Immunol. 128: 2049–2056.PubMedGoogle Scholar
  187. Laszlo, D. J., Henson, P. M., Weinstein, L., Remigio, L. K., Sable, C., Noble, P. W., and Riches, D. W. H., 1992, Development of functional diversity in mouse macrophages. Mutual exclusion of two phenotypic states, submitted for publication.Google Scholar
  188. LeBlanc, P. A., and Biron, C. A., 1984, Mononuclear phagocyte maturation: A cytotoxic monoclonal antibody reactive with postmonoblast stages, Cell. Immunol. 83: 242–254.PubMedCrossRefGoogle Scholar
  189. LeBlanc, P. A., Katz, H. R., and Russell, S. W., 1980, A discrete population of mononuclear phagocytes detected by monoclonal antibody, Infect. Immun. 29: 520–525.PubMedGoogle Scholar
  190. Ledbetter, J. A., and Herzenberg, L. A., 1979, Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens, Immunol. Rev. 47: 63–90.PubMedCrossRefGoogle Scholar
  191. Lee, K.-C., 1980, On the origin and mode of action of functionally distinct macrophage subpopulations, Mol. Cell. Biochem. 30: 39–55.PubMedCrossRefGoogle Scholar
  192. Lee, S.-H., 1991, Phenotypic analysis of human bone marrow macrophages, Blood Cells 17: 45–58.PubMedGoogle Scholar
  193. Lee, S.-H., Starkey, P. M., and Gordon, S., 1985, Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80, J. Exp. Med. 161: 475–489.PubMedCrossRefGoogle Scholar
  194. Leenen, P. J. M., 1989, Phenotypical analysis of murine macrophage differentiation, Ph.D. Thesis, Erasmus University, Rotterdam, The Netherlands.Google Scholar
  195. Leenen, P. J. M., Willmer, U., Falkenberg, F. W., Jansen, A. M. A. C., and Van Ewijk, W., 1986, Monoclonal antibodies reactive with different stages in mucine macrophage differentiation, in Leukocytes and Host Defense ( J. J. Oppenheim and D. M. Jacobs, eds.), pp. 289–294, Alan R. Liss, New York.Google Scholar
  196. Leenen, P. J. M., Kroos, M. J., Melis, M., Slieker, W. A. T., Van Ewijk, W., and Van Eijk, H. G., I990a, Differential inhibition of macrophage proliferation by anti-transferrin receptor antibody ER-MP21: Correlation to macrophage differentiation stage, Exp. Cell Res. 189: 55–63.Google Scholar
  197. Leenen, P. J. M., Melis, M., Slieker, W. A. T., and Van Ewijk, W., 1990b, Murine macrophage precursor characterization. II. Monoclonal antibodies against macrophage precursor antigens, Eur. J. Immunol. 20: 27–34.PubMedCrossRefGoogle Scholar
  198. Leenen, P. J. M., Slieker, W. A. T., Melis, M., and Van Ewijk, W., 1990e, Murine macrophage precursor characterization. I. Production, phenotype and differentiation of macrophage precursor hybrids, Eur. J. Immunol. 20: 15–25.PubMedCrossRefGoogle Scholar
  199. Leenen, P. J. M., Melis, M., Slieker, W. A. T., and Van Ewijk, W., 1991, Do ER-MP23+ connective tissue macrophages constitute a separate lineage of macrophage differentiation? J. Leukocyte Biol. 2 (Suppl.): 63–64.Google Scholar
  200. Leenen, P. J. M., Melis, M., Kraal, G., Hoogeveen, A. T., and Van Ewijk, W., 1992, Monoclonal antibody ER-BMDM 1 recognizes a macrophage and dendritic cell differentiation antigen with aminopeptidase activity, Eur. J. Immunol. 22: 1567–1572.PubMedCrossRefGoogle Scholar
  201. Leibovich, S. J., Polverini, P. J., Shephard, H. M., Wiseman, D. M., Shively, V., and Nuseir, N., 1987, Macrophage-induced angiogenesis is mediated by tumour necrosis factor-a, Nature 329: 630–632.PubMedCrossRefGoogle Scholar
  202. Lemaire, I., 1991, Selective differences in macrophage populations and monokine production in resolving pulmonary granuloma and fibrosis, Am. J. Pathol. 138: 487–495.PubMedGoogle Scholar
  203. Lemischka, I. R., Raulet, D. H., and Mulligan, R. C., 1986, Developmental potential and dynamic behavior of hematopoietic stem cells, Cell 45: 917–927.PubMedCrossRefGoogle Scholar
  204. Lew, D. B., Leslie, C. C., Riches, D. W. H., and Henson, P. M., 1986, Induction of macrophage lysosomal hydrolase synthesis and secretion by 0–1,3-glucan, Cell. Immunol. 100: 340–350.PubMedCrossRefGoogle Scholar
  205. Lew, D. B., Leslie, C. C., Henson, P. M., and Riches, D. W. H., 1991, Role of endogenously derived leukotrienes in the regulation of lysosomal enzyme expression in macrophages exposed to ß 1,3glucan, J. Leukocyte Biol. 49: 266–276.PubMedGoogle Scholar
  206. Lewinsohn, D. M., Bargatze, R. F., and Butcher, E. C., 1987, Leukocyte-endothelial cell recognition: Evidence of a common molecular mechanism shared by neutrophils, lymphocytes, and other leukocytes, J. Immunol. 138: 4313–4321.PubMedGoogle Scholar
  207. Lewis, C. E., McCarthy, S. P., Lorenzen, J., and McGee, J. O’D., 1990, Differential effects of LPS, IFN-y and TNF-a on the secretion of lysozyme by individual human mononuclear phagocytes: Relationship to cell maturity, Immunology 69: 402–408.PubMedGoogle Scholar
  208. Li, H., Schwinzer, R., Baccarini, M., and Lohmann-Matthes, M.-L., 1989, Cooperative effects of colony-stimulating factor I and recombinant interleukin 2 on proliferation and induction of cytotoxicity of macrophage precursors generated from mouse bone marrow cultures, J. Exp. Med. 169: 973–986.PubMedCrossRefGoogle Scholar
  209. Li, H., Kniep, E., Emmendörffer, A., and Lohmann-Matthes, M.-L., 1991, Differentiation of macrophage precursors to cells with LAK activity under the influence of CSF-1 and high dose IL-2, Scand. J. Immunol. 33: 511–520.PubMedCrossRefGoogle Scholar
  210. Liew, F. Y., Millot, S., Parkinson, C., Palmer, R. M. J., and Moncada, S., 1990, Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine, J. Immunol. 144: 4794–4797.PubMedGoogle Scholar
  211. Liu, Y., Jones, B., Aruffo, A., Sullivan, K. M., Linsley, P. S., and Janeway, C. A., 1992, Heat-stable antigen is a costimulatory molecule for CD4 T cell growth, J. Exp. Med. 175: 437–445.PubMedCrossRefGoogle Scholar
  212. Lohmann-Matthes, M.-L., Emmendoerffer, A., and Li, H., 1991, Influence of interleukin-2 on the differentiation of macrophages, Pathobiology 59: 117–121.PubMedCrossRefGoogle Scholar
  213. Loken, M. R., Dessner-De Jose, D. S., Van Zant, G., and Goldwasser, E., 1983, Characterization of murine hemopoietic cells using rat anti-mouse monoclonal antibodies, Hybridoma 2: 55–68.PubMedCrossRefGoogle Scholar
  214. MacDonald, H. R., 1989, T cell repertoire selection during development, Curr. Opin. Immunol. 2: 199–203.PubMedCrossRefGoogle Scholar
  215. MacVittie, T. J., 1984, The macrophage colony-forming cell, Bibl. Haematol. (Pavia) 48: 112–130.Google Scholar
  216. Malley, A., Stewart, C. C., Stewart, S. J., Waldbeser, L., Bradley, L. M., and Shiigi, S. M., 1988, Flow cytometric analysis of I-J expression on murine bone marrow-derived macrophages, J. Leukocyte Biol. 43: 557–565.PubMedGoogle Scholar
  217. Malorny, U., Michels, E., and Sorg, C., 1986, A monoclonal antibody against an antigen present on mouse macrophages and absent from monocytes, Cell Tissue Res. 243: 421–428.PubMedCrossRefGoogle Scholar
  218. Marchalonis, J. J. (ed.), 1976, Comparative Immunology, John Wiley and Sons, New York.Google Scholar
  219. Martin, C. A., Willmer, U., Falkenberg, F. W., and Dorf, M. E., 1988, Serological characterization of macrophage hybridomas: Identification of an interferon-y-inducible surface marker, Cell. Immunol. 112: 187–199.PubMedCrossRefGoogle Scholar
  220. McCormack, J. M., Sun, D., and Walker, W. S., 1991, A subset of mouse splenic macrophages can constitutively present alloantigen directly to CD8+ T cells, J. Immunol. 147: 421–427.PubMedGoogle Scholar
  221. McGarry, M. P., and Stewart, C. C., 1991, Murine eosinophil granulocytes bind the murine macrophagemonocyte specific monoclonal antibody F4/80, J. Leukocyte Biol. 50: 471–478.PubMedGoogle Scholar
  222. McMichael, A. J., Beverley, P. C. L., Gilks, W., Horton, M., Mason, D. Y., Cobbold, S., Gotch, F. M., Ling, N., Milstein, C., Waldmann, H., Crumpton, M. J., Hogg, N., MacLennan, I. C. M., and Spiegelhalter, D. (eds.), 1987, Leucocyte Typing III. White Cell Differentiation Antigens, Oxford University Press, Oxford.Google Scholar
  223. Mebius, R. E., Martens, G., Brevé, J., Delemarre, F. G. A., and Kraal, G., 1991, Is early repopulation of macrophage-depleted lymph node independent of blood monocyte immigration? Eur. J. Immunol. 21: 3041–3044.PubMedCrossRefGoogle Scholar
  224. Melnicoff, M. J., Horan, P. K., Breslin, E. W., and Morahan, P. S., 1988, Maintenance of peritoneal macrophages in the steady state, J. Leukocyte Biol. 44: 367–375.PubMedGoogle Scholar
  225. Metcalf, D., 1971, Transformation of granulocytes to macrophages in bone marrow colonies in vitro, J. Cell. Physiol. 77: 277–280.CrossRefGoogle Scholar
  226. Metcalf, D., 1984, The Hemopoietic Colony Stimulating Factors, Elsevier, AmsterdamGoogle Scholar
  227. Metcalf, D., 1988, The Molecular Control of Blood Cells, Harvard University Press, Cambridge, Mass. Metcalf, D., 1991, Control of granulocytes and macrophages: Molecular, cellular and clinical aspects, Science 254: 529–533.Google Scholar
  228. Metcalf, D., and Burgess, A. W., 1982, Clonal analysis of progenitor cell commitment to granulocyte or macrophage production, J. Cell. Physiol. 111: 275–283.PubMedCrossRefGoogle Scholar
  229. Metchnikoff, E., 1884, Concerning the relationship between phagocytes and anthrax bacilli, Virchows Arch. Pathol. Anat. 97:502–506; reprinted translation by D. Magasanik and A. H. Coons, 1984, Rev. Infect. Dis. 6: 761–770.CrossRefGoogle Scholar
  230. Metlay, J. P., Witmer-Pack, M. D., Agger, R., Crowley, M. T., Lawless, D., and Steinman, R. M., 1990, The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies, J. Exp. Med. 171: 1753–1771.PubMedCrossRefGoogle Scholar
  231. Metzger, Z., Hoffeld, J. T., and Oppenheim, J. J., 1980, Macrophage-mediated suppression. I. Evidence for participation of both hydrogen peroxide and prostaglandins in suppression of murine lymphocyte proliferation, J. Immunol. 124: 983–988.PubMedGoogle Scholar
  232. Michels, E., Burmeister, G., and Sorg, C., 1987, Generation and characterization of a monoclonal antibody (7D10) to murine migration inhibitory factor (MIF), Lymphokine Res. 6 (A): 1447.Google Scholar
  233. Millar, D. A., and Ratcliffe, N. A., 1989, The evolution of blood cells: Facts and enigmas, Endeavour 13: 72–77.PubMedCrossRefGoogle Scholar
  234. Miller, B. A., Antognetti, G., and Springer, T. A., 1985, Identification of cell surface antigens present on murine hematopoietic stem cells, J. Immunol. 134: 3286–3290.PubMedGoogle Scholar
  235. Mills, C. D., 1991, Molecular basis of“suppressor” macrophages. Arginine metabolism via the nitric oxide synthetase pathway, J. Immunol. 146: 2719–2723.PubMedGoogle Scholar
  236. Mohandas, N., 1991, Cell-cell interactions and erythropoiesis, Blood Cells 17: 59–64.PubMedGoogle Scholar
  237. Moore, R. N., Pitruzzello, F. J., Deana, D. G., and Rouse, B. T., 1985a, Endogenous regulation of macrophage proliferation and differentiation by E prostaglandins and interferon «/ß, Lymphokine Res. 4: 43–50.Google Scholar
  238. Moore, R. N., Pitruzzello, F. J., Robinson, R. M., and Rouse, B. T., 1985b, Interferon produced endogenously in response to CSF-1 augments the functional differentiation of progeny macrophages, J. Leukocyte Biol. 37: 659–664.PubMedGoogle Scholar
  239. Moore, R. N., Osmand, A. P., Dunn, J. A., Joshi, J. G., Koontz, J. W., and Rouse, B. T., 1989, Neurotensin regulation of macrophage colony-stimulating factor-stimulated in vitro myelopoiesis, J. Immunol. 142: 2689–2694.PubMedGoogle Scholar
  240. Morahan, P. S., Rozner, M. A., and Jessee, E. J., 1982, Effect of elicitation on peritoneal macrophage subpopulations: Size distributions, ectoenzyme phenotypes and antitumor activity, Int. J. Cancer 30: 787–794.PubMedCrossRefGoogle Scholar
  241. Morris, L., Crocker, P. R., Fraser, I., Hill, M., and Gordon, S., 1991, Expression of a divalent cation-dependent erythroblast adhesion receptor by stromal macrophages from murine bone marrow, J. Cell Sci. 99: 141–147.PubMedGoogle Scholar
  242. Mueller, D. L., Jenkins, M. K., and Schwartz, R. H., 1989, Clonal expansion versus functional clonal inactivation: A costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy, Annu. Rev. Immunol. 7: 445–480.PubMedCrossRefGoogle Scholar
  243. Munro, C. S., Campbell, D. A., Collings, L. A., and Poulter, L. W., 1987, Monoclonal antibodies distinguish macrophages and epithelioid cells in sarcoidosis and leprosy, Clin. Exp. Immunol. 68: 282–287.PubMedGoogle Scholar
  244. Murphy, G. F., Messadi, D., Fonferko, E., and Hancock, W. W., 1986, Phenotypic transformation of macrophages to Langerhans cells in the skin, Am. J. Pathol. 123: 401–406.PubMedGoogle Scholar
  245. Murray, H. W., Spitalny, G. L., and Nathan, C. F., 1985, Activation of mouse peritoneal macrophages in vitro and in vivo by interferon-7, J. Immunol. 134: 1619–1622.PubMedGoogle Scholar
  246. Nacy, C. A., and Meltzer, M. S., 1991, T-cell mediated activation of macrophages, Curr. Opin. Immunol. 3: 330–335.PubMedCrossRefGoogle Scholar
  247. Nacy, C. A., Leonard, E. J., and Meltzer, M. S., 1981, Macrophages in resistance to rickettsial infections: Characterization of lymphokines that induce rickettsiacidal activity in macrophages, J. Immunol. 126: 204–207.PubMedGoogle Scholar
  248. Naito, M., Yamamura, F., Nishikawa, S.-I., and Takahashi, K., 1989, Development, differentiation, and maturation of fetal mouse yolk sac macrophages in culture, J. Leukocyte Biol. 46: 1–10.PubMedGoogle Scholar
  249. Naito, M., Takahashi, K., and Nishikawa, S.-I., 1990, Development, differentiation, and maturation of macrophages in the fetal mouse liver, J. Leukocyte Biol. 48: 27–37.PubMedGoogle Scholar
  250. Najar, H. M., Ruhl, S., Bru-Capdeville, A. C., and Peters, J. H., 1990, Adenosine and its derivatives control human monocyte differentiation into highly accessory cells versus macrophages, J. Leukocyte Biol. 47: 429–439.PubMedGoogle Scholar
  251. Nathan, C. F., 1987, Secretory products of macrophages, J. Clin. Invest 79: 319–326.PubMedCrossRefGoogle Scholar
  252. Nathan, C. F., and Hibbs, J. B., Jr., 1991, Role of nitric oxide synthesis in macrophage antimicrobial activity, Curr. Opin. Immunol. 3: 65–70.PubMedCrossRefGoogle Scholar
  253. Nei, M., and Koehn, R. K. (eds.), 1983, Evolution of Genes and Proteins, Sinauer Associates, Sunderland, Mass.Google Scholar
  254. Neumann, C., and Sorg, C., 1980, Sequential expression of functions during macrophage differentiation in murine bone marrow liquid cultures, Eur. J. Immunol. 10: 834–840.PubMedCrossRefGoogle Scholar
  255. Nibbering, P. H., Leijh, P. C. J., and Van Furth, R., 1987, Quantitative immunocytochemical characterization of mononuclear phagocytes. I. Monoblasts, promonocytes, monocytes, and peritoneal and alveolar macrophages, Cell. Immunol. 105: 374–385.PubMedCrossRefGoogle Scholar
  256. Normann, S. J., and Weiner, R., 1983, Cytotoxicity of human peripheral blood monocytes, Cell. Immunol. 81: 413–425.PubMedCrossRefGoogle Scholar
  257. Novak, J. P., Skamene, E., and Gervais, F., 1989, Quantitative model of mononuclear phagocyte lineage proliferation in murine bone marrow, J. Leukocyte Biol. 46: 25–33.PubMedGoogle Scholar
  258. Nussenzweig, M. C., Steinman, R. M., Witmer, M. D., and Gutchinov, B., 1982, A monoclonal antibody specific for mouse dendritic cells, Proc. Natl. Acad. Sci. USA 79: 161–165.PubMedCrossRefGoogle Scholar
  259. Ogawa, M., Porter, P. N., and Nakahata, T., 1983, Renewal and commitment to differentiation of hemopoietic stem cells (an interpretive review), Blood 61: 823–829.PubMedGoogle Scholar
  260. Oliver, A. M., 1990, Macrophage heterogeneity in human fetal tissue. Fetal macrophages, Clin. Exp. Immunol. 80: 454–459.PubMedCrossRefGoogle Scholar
  261. Ortega, G., Robb, R. J., Shevach, E. M., and Malek, T., 1984, The murine IL-2 receptor. I. Monoclonal antibodies that define distinct functional epitopes on activated T cells and react with activated B cells, J. Immunol. 133: 1970–1975.PubMedGoogle Scholar
  262. Osawa, H., and Diamantstein, T., 1984, A rat monoclonal antibody that binds specifically to mouse T lymphoblasts and inhibits IL 2 receptor functions: A putative anti-IL 2 receptor antibody, J. Immunol. 132: 2445–2450.PubMedGoogle Scholar
  263. Papadimitriou, J. M., and Ashman, R. B., 1989, Macrophages: Current views on their differentiation, structure and function, Ultrastruct. Pathol. 13: 343–372.PubMedCrossRefGoogle Scholar
  264. Papiernik, M., Lehuen, A., and Savino, W., 1987a, Definition of a differentiation antigen on the surface of phagocytic cells of thymic reticulum which is down-regulated by interferon-y, Cell. Immunol. 105: 280–289.Google Scholar
  265. Papiernik, M., Penit, C., and El Rouby, S., I987b, Control of prothymocyte proliferation by thymic accessory cells, Eur. J. Immunol. 17: 1303–1310.Google Scholar
  266. Papiernik, M., Lepault, F., and Pontoux, C., 1988, Synergistic effect of colony-stimulating factors and IL-2 on prothymocyte proliferation linked to the maturation of macrophage/dendritic cells within L3T4-Lyt-21a Mac cells, J. Immunol. 140: 1431–1434.PubMedGoogle Scholar
  267. Pasquale, D., Chikkappa, G., Wang, G., and Santella, D., 1989, Hydrocortisone promotes survival and proliferation of granulocyte-macrophage progenitors via monocytes/macrophages, Exp. Hematol. 17: 1110–1115.PubMedGoogle Scholar
  268. Paulnock, D. M., and Lambert, L. E., 1990, Identification and characterization of monoclonal antibodies specific for macrophages at intermediate stages in the tumoricidal activation pathway, J. Immunol. 144: 765–773.PubMedGoogle Scholar
  269. Perry, V. H., and Gordon, S., 1991, Macrophages and the nervous system, Int. Rev. Cytol. 125: 203–244.PubMedCrossRefGoogle Scholar
  270. Perussia, B., Dayton, E. T., Fanning, V., Thiagarajan, P., Hoxie, J., and Trinchieri, G., 1983, Immune interferon and leukocyte conditioned medium induce normal and leukemic myeloid cells to differentiate along the monocytic pathway, J. Exp. Med. 158: 2058–2080.PubMedCrossRefGoogle Scholar
  271. Peters, J. H., Börner, T., and Ruppert, J., 1990, Accessory phenotype and function of macrophages induced by cyclic adenosine monophosphate, Int. Immunol. 2: 1195–1202.PubMedCrossRefGoogle Scholar
  272. Peters, J. H., Ruppert, J., Gieseler, R. K. H., Najar, H. M., and Xu, H., 1991, Differentiation of human monocytes into CD 14 negative accessory cells: Do dendritic cells derive from the monocytic lineage? Pathobiology 59: 122–126.PubMedCrossRefGoogle Scholar
  273. Peters-Golden, M., McNish, R. W., Hyzy, R., Shelly, C., and Toews, G. B., 1990, Alterations in the pattern of arachidonate metabolism accompany rat macrophage differentiation in the lung, J. Immunol. 144: 263–270.PubMedGoogle Scholar
  274. Petty, H. R., Fox, B. A., Berg, K. A., and Francis, J. W., 1987, A monoclonal antibody (BMA-1) reactive with murine B cells as well as resident and elicited but not activated macrophages, Immunol. Lett. 15: 341–346.CrossRefGoogle Scholar
  275. Phipps, R. P., Roper, R. L., and Stein, S. H., 1990, Regulation of B-cell tolerance and triggering by macrophages and lymphoid dendritic cells, Immunol. Rev. 117: 135–158.PubMedCrossRefGoogle Scholar
  276. Pierce, G. F., Mustoe, T. A., Lingelbach, J., Masakowski, V. R., Gramates, P., and Deuel, T. F., 1989, Transforming growth factor ß reverses the glucocorticoid-induced wound-healing deficit in rats: possible regulation in macrophages by platelet-derived growth factor, Proc. Natl. Acad. Sci. USA 86: 2229–2233.PubMedCrossRefGoogle Scholar
  277. Pierres, M., Goridis, C., and Goldstein, P., 1982, Inhibition of murine T cell-mediated cytolysis and T cell proliferation by a rat monoclonal antibody immunoprecipitating two lymphoid cell surface polypeptides of 94 000 and 180 000 molecular weight, Eur. J. Immunol. 12: 60–69.PubMedCrossRefGoogle Scholar
  278. Pierres, A., Naquet, P., van Agthoven, A., Bekkhoucha, F., Denizot, F., Mishal, Z., Schmitt-Verhulst, A.-M., and Pierres, M., 1984, A rat anti-mouse T4 monoclonal antibody (H129.19) inhibits the proliferation of Ia-reactive T cell clones and delineates two phenotypically distinct (T4+, Lyt-2,3-, and T4-, Lyt-2,3’) subsets among anti-Ia cytolytic T cell clones, J. Immunol. 132: 2775–2782.PubMedGoogle Scholar
  279. Pino, R. M., and Bankston, P. W., 1979, The development of the sinusoids of fetal rat liver: Localization of endogenous peroxidase in fetal Kupffer cells, J. Histochem. Cytochem. 27: 643–652.PubMedCrossRefGoogle Scholar
  280. Pirami, L., Stockinger, B., Corradin, S. B., Sironi, M., Sassano, M., Valsasnini, P., Righi, M., and Ricciardi-Castagnoli, P., 1991, Mouse macrophage clones immortalized by retroviruses are functionally heterogeneous, Proc. Natl. Acad. Sei. USA 88: 7543–7547.CrossRefGoogle Scholar
  281. Prieto, J., Takei, F., Gendelman, R., Christenson, B., Biberfeld, P., and Patarroyo, M., 1989, MALA-2, mouse homologue of human adhesion molecule ICAM-1 (CD54), Eur. J. Immunol. 19: 1551–1557.PubMedCrossRefGoogle Scholar
  282. Rabinowitz, S. S., and Gordon, S., 1991, Macrosialin, a macrophage-restricted membrane sialoprotein differentially glycosylated in response to inflammatory stimuli, J. Exp. Med. 174: 827–836.PubMedCrossRefGoogle Scholar
  283. Radzun, H. J., Parwaresch, M. R., Bödewadt, S., Sundström, C., and Lennert, K., 1985, Bimodal differentiation prospectives for promyelocytes, J. Natl. Cancer Inst. 75: 199–203.PubMedGoogle Scholar
  284. Radzun, H. J., Kreipe, H., Zavazava, N., Hansmann, M.-L., and Parwaresch, M. R., 1988, Diversity of the human monocyte/macrophage system as detected by monoclonal antibodies, J. Leukocyte Biol. 43: 41–50.PubMedGoogle Scholar
  285. Rappolee, D. A., and Werb, Z., 1988, Secretory products of phagocytes, Curr. Opin. Immunol. 1: 47–55.PubMedCrossRefGoogle Scholar
  286. Reid, C. D. L., Fryer, P. R., Clifford, C., Kirk, A., Tikerpae, J., and Knight, S. C., 1990, Identification of hematopoietic progenitors of macrophages and dendritic Langerhans cells (DL-CFU) in human bone marrow and peripheral blood, Blood 76: 1 139–1149.Google Scholar
  287. Reinherz, E. L., Haynes, B. F., Nadler, L. M., and Bernstein, I. D. (eds.), 1986, Leucocyte Typing II, Vol. 3, Human Myeloid and Hematopoietic Cells, Springer-Verlag, Berlin.Google Scholar
  288. Rich, I. N., 1986, A role for the macrophage in normal hemopoiesis. I. Functional capacity of bone-marrow-derived macrophages to release hemopoietic growth factors, Exp. Hematol. 14: 738–745.PubMedGoogle Scholar
  289. Riches, D. W. H., 1988, The multiple roles of macrophages in wound healing, in The Molecular and Cellular Biology of Wound Repair ( R. A. F. Clark and P. M. Henson, eds.), pp. 213–239, Plenum Press, New York.CrossRefGoogle Scholar
  290. Riches, D. W. H., and Henson, P. M., 1986, Bacterial lipopolysaccharide suppresses the production of catalytically active lysosomal acid hydrolases in human macrophages, J. Cell Biol. 102: 1606–1614.PubMedCrossRefGoogle Scholar
  291. Riches, D. W. H., and Underwood, G. A., 1991, Expression of IFN-ß during the triggering phase of macrophage cytocidal activation. Evidence for an autocrine/paracrine role in the regulation of this state, J. Biol. Chem. 266: 24785–24792.PubMedGoogle Scholar
  292. Riches, D. W. H., Henson, P. M., Remigio, L. K., Catterall, J. F., and Strunk, R. C., 1988, Differential regulation of gene expression during macrophage activation with a polyribonucleotide. The role of endogenously derived IFN, J. Immunol. 141: 180–188.PubMedGoogle Scholar
  293. Righi, M., Mori, L., De Libero, G., Sironi, M., Biondi, A., Mantovani, A., Denis Donini, S., and Ricciardi, N., Castagnoli, P., 1989, Monokine production by microglial cell clones, Eur. J. Immunol. 19: 1443–1448.PubMedCrossRefGoogle Scholar
  294. Rizvi, N., Chaturvedi, U. C., and Mathur, A., 1989, Obligatory role of macrophages in dengue virus antigen presentation to B lymphocytes, Immunology 67: 38–43.PubMedGoogle Scholar
  295. Röber, R.-A., Weber, K., and Osborn, M., 1989, Differential timing of lamin A/C expression in the various organs of the mouse embryo and the young animal: A developmental study, Development 105: 365–378.PubMedGoogle Scholar
  296. Ober, R.-A., Gieseler, R. K. H., Peters, J. H., Weber, K., and Osborn, M., 1990, Induction of nuclear lamins A/C in macrophages in in vitro cultures of rat bone marrow precursor cells and human blood monocytes, and in macrophages elicited in vivo by thioglycollate stimulation, Exp. Cell. Res. 190: 185–194.CrossRefGoogle Scholar
  297. Robinson, B. E., and Quesenberry, P. J., 1990a, Hematopoietic growth factors: overview and clinical applications, Part I, Am. J. Med. Sei. 300: 163–170.CrossRefGoogle Scholar
  298. Robinson, B. E., and Quesenberry, P. J., 1990b, Hematopoietic growth factors: Overview and clinical applications, Part II, Am. J. Med. Sci. 300: 237–244.PubMedCrossRefGoogle Scholar
  299. Robinson, B. E., and Quesenberry, P. J., 1990c, Hematopoietic growth factors: Overview and clinical applications, Part III, Am. J. Med. Sci. 300: 311–321.PubMedCrossRefGoogle Scholar
  300. Roodman, G. R., 1991, Osteoclast differentiation, Crit. Rev. Oral Biol. Med. 2: 389–409.PubMedGoogle Scholar
  301. Rosen, H., and Law, S. K. A., 1989, The leukocyte cell surface receptor(s) for the iC3b product of complement, Curr. Top. Microbiol. Immunol. 153: 99–122.CrossRefGoogle Scholar
  302. Rosen, H., Milon, G., and Gordon, S., 1989, Antibody to the murine type 3 complement receptor inhibits T lymphocyte-dependent recruitment of myelomonocytic cells in vivo, J. Exp. Med. 169: 535–548.CrossRefGoogle Scholar
  303. Rosmarin, A. G., Weil, S. C., Rosner, G. L., Griffin, J. D., Arnaout, M. A., and Tenen, D. G., 1989, Differential expression of CD 11 b/CD 18 (Mo 1) and myeloperoxidase genes during myeloid differentiation, Blood 73: 131–136.PubMedGoogle Scholar
  304. Rosser, S., 1976, Phylogenetic origins of the vertebrates, in Comparative Immunology (J. J. Marchalonis, ed.), pp. l-19, John Wiley & Sons, New York.Google Scholar
  305. Ruscetti, F. W., Jacobsen, S. E., Birchenall-Roberts, M., Broxmeyer, H. E., Engelmann, G. L., Dubois, C., and Keller, J. R., 1991, Role of transforming growth factor-ßl in regulation of hematopoiesis, Ann. N. Y. Acad. Sci. 628: 31–43.PubMedCrossRefGoogle Scholar
  306. Rutherford, M. S. and Schook, L. B., 1992, Differential immunocompetence of macrophages derived using macrophage or granulocyte-macrophage colony-stimulating factor, J. Leukocyte Biol. 51: 69–76.PubMedGoogle Scholar
  307. Sadahira, Y., Mori, M., Awai, M., Watarai, S., and Yasuda, T., 1988, Forssman glycosphingolipid as an immunohistochemical marker for mouse stromal macrophages in hematopoietic foci, Blood 72: 42–48.PubMedGoogle Scholar
  308. Sadahira, Y., Yasuda, T., and Kimoto, T., 1991, Regulation of Forssman antigen expression during maturation of mouse stromal macrophages in haematopoietic foci, Immunology 73: 498–504.PubMedGoogle Scholar
  309. Sakata, T., Iwagami, S., Tsuruta, Y., Teraoka, H., Hojo, K., Suzuki, S., Sato, K., and Suzuki, R., 1990, The role of lipocortin I in macrophage-mediated immunosuppression in tumor-bearing mice, J. Immunol. 145: 387–396.PubMedGoogle Scholar
  310. Sanchez-Madrid, F., Simon, P., Thompson, S., and Springer, T. A., 1983, Mapping of antigenic and functional epitopes on the a-and ß-subunits of two related mouse glycoproteins involved in cell interactions, LFA-1 and Mac-1, J. Exp. Med. 158: 586–602.PubMedCrossRefGoogle Scholar
  311. Sandrin, M. S., Hogart, P. M., and McKenzie, I. F. C., 1983, Two “Qa” specificities: Qa-m7 and Qa-m8 defined by monoclonal antibodies, J. Immunol. 131: 546–547.PubMedGoogle Scholar
  312. Savill, J., Dransfield, I., Hogg, N., and Haslett, C., 1990, Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis, Nature (London) 343: 170–173.Google Scholar
  313. Sawyer, R. T., 1986a, The significance of local resident pulmonary alveolar macrophage proliferation to population renewal, J. Leukocyte Biol. 39: 77–87.PubMedGoogle Scholar
  314. Sawyer, R. T., 1986b, The cytokinetic behavior of pulmonary alveolar macrophages in monocytopenic mice, J. Leukocyte Biol. 39: 89–99.PubMedGoogle Scholar
  315. Sawyer, R. T., 1986c, The ontogeny of pulmonary alveolar macrophages in parabiotic mice, J. Leukocyte Biol. 40: 347–354.PubMedGoogle Scholar
  316. Sawyer, R. T., Strausbauch, P. H. and Volkman, A., 1982, Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89, Lab. Invest. 46: 165–170.PubMedGoogle Scholar
  317. Schade, U. F., Burmeister, I., Elekes, E., Engel, R. and Wolter, D. T., 1989, Mononuclear phagocytes and eicosanoids: Aspects of their synthesis and biological activities, Blut 59: 475–485.PubMedCrossRefGoogle Scholar
  318. Scheven, B. A. A., and Hamilton, N. J., 1991, Stimulation of macrophage growth and multinucleated cell formation in rat bone marrow cultures by insulin-like growth factor I, Biochem. Biophys. Res. Commun. 174: 647–653.PubMedCrossRefGoogle Scholar
  319. Schlesinger, L. S., Bellinger-Kawahara, C. G., Payne, N. R., and Horwitz, M. A., 1990, Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3, J. Immunol. 144: 2771–2780.PubMedGoogle Scholar
  320. Schuler, G., and Steinman, R. M., 1985, Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro, J. Exp. Med. 161: 526–546.CrossRefGoogle Scholar
  321. Schwamberger, G., Flesch, I., and Ferber, E., 1991, Tumoricidal effector molecules of murine macrophages, Pathobiology 59: 248–253.PubMedCrossRefGoogle Scholar
  322. Schwartz, R. H., 1990, A cell culture model for T lymphocyte clonal anergy, Science 248: 1349–1356.PubMedCrossRefGoogle Scholar
  323. Sherr, C. J., 1990, The colony-stimulating factor 1 receptor: Pleiotropy of signal-response coupling, Lymphokine Res. 9: 543–548.PubMedGoogle Scholar
  324. Shezen, E., Shirman, M., and Goldman, R., 1985, Opposing effects of dexamethasone on the clonal growth of granulocyte and macrophage progenitor cells and on the phagocytic capability of mononuclear phagocytes at different stages of differentiation, J Cell. Physiol. 124: 545–553.PubMedCrossRefGoogle Scholar
  325. Shibata, Y., and Volkman, A., 1985, The effect of bone marrow depletion on prostaglandin E-producing suppressor macrophages in mouse spleen, J. Immunol. 135: 3897–3904.PubMedGoogle Scholar
  326. Simms, H. H., Gaither, T. A., Fries, L. F., and Frank, M. M., 1991, Monokines released during short-term Fc-y receptor phagocytosis up-regulate polymorphonuclear leukocytes and monocyte-phagocytic function, J. Immunol. 147: 265–272.PubMedGoogle Scholar
  327. Sluiter, W., Hulsing-Hesselink, E., Elzenga-Claasen, I., Van Hemsbergen-Oomens, L. W. M., Van der Voort Van der Kleij-Van Andel, A., and Van Furth, R., 1987, Macrophages as origin of factor increasing monocytopoiesis, J. Exp. Med. 166: 909–922.Google Scholar
  328. Smith, M. J., and Koch, G. L. E., 1987, Differential expression of murine macrophage surface glycoprotein antigens in intracellular membranes, J. Cell Sci. 87: 113–119.PubMedGoogle Scholar
  329. Smith, C. W., Marlin, S. D., Rothlein, R., Toman, C., and Anderson, D. C., 1989, Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro, J. Clin. Invest. 83: 2008–2017.PubMedCrossRefGoogle Scholar
  330. Solomon, F. R., and Higgins, T. J., 1987, A monoclonal antibody with reactivity to asialo GM, and murine natural killer cells, Mol. Immunol. 24: 57–65.PubMedCrossRefGoogle Scholar
  331. Someya, A., 1985, Specific surface antigens expressed on activated mouse peritoneal macrophages and recognized by a novel monoclonal antibody, Immunology 56: 683–688.PubMedGoogle Scholar
  332. Someya, A., 1986, A novel rat monoclonal antibody reactive with murine tumoricidal Kupffer cells and activated peritoneal macrophages from BCG-infected mice, Immunology 57: 605–610.PubMedGoogle Scholar
  333. Sonnenberg, A., Van Balen, P., Hengeveld, T., Kolvenbag, G. J. C. M., Van Hoeven, R. P., and Hilgers, J., 1986, Monoclonal antibodies detecting different epitopes on the Forssman glycolipid hapten, J. Immunol. 137: 1264–1269.PubMedGoogle Scholar
  334. Sorg, C., and Odink, K., 1987, The molecular complex of macrophage migration inhibitory activity (MIF) and its role in inflammatory reactions, in Molecular Basis of Lymphokine Action ( D. R. Webb, C. W. Pierce, and S. Cohen, eds.), pp. 271–281, Humana Press, Clifton, N.J.CrossRefGoogle Scholar
  335. Sorokin, S. P., Hoyt, R. F., and Grant, M. M., 1984, Development of macrophages in the lungs of fetal rabbits, rats, and hamsters, Anat. Rec. 208: 103–121.PubMedCrossRefGoogle Scholar
  336. Sorokin, S. P., Kobzik, L., Hoyt, R. F., and Godleski, J. J., 1989, Development of surface membrane characteristics of “premedullary” macrophages in organ cultures of embryonic rat and hamster lungs, J Histochem. Cytochem. 37: 365–376.PubMedCrossRefGoogle Scholar
  337. Springer, T. A., 1980, Cell-surface differentiation in the mouse. Characterization of “jumping” and “lineage” antigens using xenogeneic rat monoclonal antibodies, in Monoclonal Antibodies. Hybridomas: A New Dimension in Biological Analysis ( R. H. Kennett, T. J. McKearn, and K. B. Bechtol, eds.), pp. 185–217, Plenum Press, New York.CrossRefGoogle Scholar
  338. Springer, T. A., 1981, Monoclonal antibodies as tools for the study of mononuclear phagocytes, in Methods for Studying Mononuclear Phagocytes ( D. O. Adams, P. J. Edelson, and H. S. Koren, eds.), pp. 305–313, Academic Press, New York.CrossRefGoogle Scholar
  339. Springer, T. A., Galfré, G., Secher, D. S., and Milstein, C., 1979, Mac-1: A macrophage differentiation antigen identified by monoclonal antibody, Eur. J Immunol. 9: 301–306.PubMedCrossRefGoogle Scholar
  340. Srimal, S., and Nathan, C., 1990, Purification of macrophage deactivating factor, J. Exp. Med. 171: 1347–1361.PubMedCrossRefGoogle Scholar
  341. Starkey, P. M., Turley, L., and Gordon, S., 1987, The mouse macrophage-specific glycoprotein defined by mooclonal antibody F4/80: Characterization, biosynthesis and demonstration of a rat analogue, Immunology 60: 117–122.PubMedGoogle Scholar
  342. Steinman, R. M., 1991, The dendritic cell system and its role in immunogenicity, Annu. Rev. Immunol. 9: 271–296.PubMedCrossRefGoogle Scholar
  343. Steinman, R. M., and Young, J. W., 1991, Signals arising from antigen-presenting cells, Curr. Opin. Immunol. 3: 361–372.PubMedCrossRefGoogle Scholar
  344. Steuhr, D. J., and Nathan, C. F., 1989, Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor targets, J. Exp. Med. 169: 1543–1555.CrossRefGoogle Scholar
  345. Stingl, G., Wolff-Schreiner, E. C., Pichler, W. J., Gschnait, F., Knapp, W., and Wolff, K., 1977, Epidermal Langerhans cells bear Fc and C3 receptors, Nature (London) 268: 245–246.CrossRefGoogle Scholar
  346. Suda, T., 1989, The role of la,25-dihydroxyvitamin D3 in the myeloid cell differentiation, Proc. Soc. Exp. Biol. Med. 191: 214–220.PubMedGoogle Scholar
  347. Sun, D., and Lohmann-Matthes, M.-L., 1982, Functionally different subpopulations of mouse macrophages recognized by monoclonal antibodies, Eur. J. Immunol. 12: 134–140.PubMedCrossRefGoogle Scholar
  348. Szabo, G., Miller, C. L., and Kodys, K., 1990, Antigen presentation by the CD4 positive monocyte subset, J. Leukocyte Biol. 47: 111–120.PubMedGoogle Scholar
  349. Takahashi, K., Yamamura, F., and Naito, M., 1989, Differentiation, maturation, and proliferation of macrophages in the yolk sac: A light-microscopic, enzyme-cytochemical, immunohistochemical, and ultrastructural study, J. Leukocyte Biol. 45: 87–96.PubMedGoogle Scholar
  350. Takahashi, K., Naito, M., Katabuchi, H., and Higashi, K., 1991, Development, differentiation, and maturation of macrophages in the chorionic villi of mouse placenta with special reference to the origin of Hofbauer cells, J. Leukocyte Biol. 50: 57–68.PubMedGoogle Scholar
  351. Takei, F., 1985, Inhibition of mixed lymphocyte response by a rat monoclonal antibody to a novel murine lymphocyte activation antigen (MALA-2), J. Immunol. 134: 1403–1407.PubMedGoogle Scholar
  352. Takemura, R., and Werb, Z., 1984, Secretory products of macrophages and their physiological functions, Am. J. Physiol. 246: C1 - C9.PubMedGoogle Scholar
  353. Taniyama, T., and Tokunaga, T., 1983, Monoclonal antibodies directed against mouse macrophages in different stages of activation for tumor cytotoxicity, J. Immunol. 131: 1032–1037.PubMedGoogle Scholar
  354. Taniyama, T., and Watanabe, T., 1982, Establishment of a hybridoma secreting a monoclonal antibody specific for activated tumoricidal macrophages, J. Exp. Med. 156: 1286–1291.PubMedCrossRefGoogle Scholar
  355. Tarling, J. D., and Coggle, J. E., 1982, Evidence for the pulmonary origin of alveolar macrophages, Cell Tissue Kinet. 15: 577–584.PubMedGoogle Scholar
  356. Tarling, J. D., Lin, H.-S., and Hsu, S., 1987, Self-renewal of pulmonary alveolar macrophages: Evidence from radiation chimera studies, J. Leukocyte Biol. 42: 443–446.PubMedGoogle Scholar
  357. Theisen, M., Stief, A., and Sippel, A. E., 1986, The lysozyme enhancer: Cell-specific activation of the chicken lysozyme gene by a far-upstream DNA element, EMBO J. 5: 719–724.PubMedGoogle Scholar
  358. Thepen, T., Van Rooyen, N., and Kraal, G., 1989, Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice, J. Exp. Med. 170: 499–509.PubMedCrossRefGoogle Scholar
  359. Titus, R. G., Sherry, B., and Cerami, A., 1989, Tumor necrosis factor plays a protective role in experimental murine cutaneous leishmaniasis, J. Exp. Med. 170: 2097–2104.PubMedCrossRefGoogle Scholar
  360. Tomioka, H., and Saito, H., 1992, Characterization of immunosuppressive functions of murine peritoneal macrophages induced with various agents, J. Leukocyte Biol. 51: 24–31.PubMedGoogle Scholar
  361. Treves, A. J., 1984, The origin of monocyte-macrophage heterogeneity: Possible alternatives, Med. Hypothes. 14: 335–346.CrossRefGoogle Scholar
  362. Trinchieri, G., 1989, Biology of natural killer cells, Adv. Immunol. 47: 187–376.PubMedCrossRefGoogle Scholar
  363. Trowbridge, I. S., Lesley, J., Schulte, R., Hyman, R., and Trotter, J., 1982, Biochemical characterization and cellular distribution of a polymorphic, murine cell-surface glycoprotein expressed on lymphoid tissues. Immunogenetics 15: 299–312.PubMedCrossRefGoogle Scholar
  364. Turk, J. L., 1985, The mononuclear phagocyte system in granulomas, Br. J. Dermatol. 113 (Suppl. 28): 49–54.PubMedCrossRefGoogle Scholar
  365. Turk, J. L., 1989, Current status review: A comparison of secretory epithelioid cells and phagocytosing macrophages in experimental mycobacterial granulomas, Br. J. Exp. Pathol. 70: 589–596.PubMedGoogle Scholar
  366. Turk, J. L., and Narayanan, R. B., 1982, The origin, morphology, and function of epithelioid cells, Immunobiology 161: 274–282.PubMedCrossRefGoogle Scholar
  367. Turyna, B., and Szuba, K., 1988, The comparison of lysosomal enzymes activities in alveolar and peritoneal macrophages of rat, Biochem. Int. 17: 433–440.PubMedGoogle Scholar
  368. Uchida, T., Ju, S.-T., Fay, A., Liu, Y.-N., and Dorf, M. E., 1985, Functional analysis of macrophage hybridomas. I. Production and initial characterization, J. Immunol. 134: 772–778.PubMedGoogle Scholar
  369. Unkeless, J. C., 1979, Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors, J. Exp. Med. 150: 580–596.PubMedCrossRefGoogle Scholar
  370. Uren, S., and Boyle, W., 1989, Stimulation of allogeneic and autologous MLR by subpopulations of human monocytes, Transplant. Proc. 21: 208–210.PubMedGoogle Scholar
  371. Van Agthoven, A., Goridis, C., Naquet, P., Pierres, A., and Pierres, M., 1984, Structural characteristics of the mouse transferrin receptor, Eur. J. Biochem. 140: 433–440.PubMedCrossRefGoogle Scholar
  372. Van der Meer, J. W. M., Beelen, R. H. J., Fluitsma, D. M., and Van Furth, R., 1979, Ultrastructure of mononuclear phagocytes developing in liquid bone marrow cultures. A study on peroxidatic activity, J. Exp. Med. 149: 17–26.PubMedCrossRefGoogle Scholar
  373. Van der Meer, J. W. M., Van de Gevel, J. S., and Van Furth, R., 1983, Characteristics of long-term cultures of proliferating, mononuclear phagocytes from bone marrow, J. Reticuloendothel. Soc. 34: 203–225.PubMedGoogle Scholar
  374. Van Dissel, J. T., Stikkelbroeck, J. J. M., Michel, B. C., van den Barselaar, M. Th., Leijh, P. C. J., and Van Furth, R., 1987, Inability of recombinant interferon-y to activate the antibacterial activity of mouse peritoneal macrophages against Listeria monocytogenes and Salmonella typhimurium, J. Immunol. 139: 1673–1678.Google Scholar
  375. Van Ewijk, W., 1984, Immunohistology of lymphoid and non-lymphoid cells in the thymus in relation to T lymphocyte differentiation, Am. J. Anat. 170: 311–330.PubMedCrossRefGoogle Scholar
  376. Van Ewijk, W., 1991, T-cell differentiation is influenced by thymic microenvironments, Annu. Rev. Immunol. 9: 591–615.PubMedCrossRefGoogle Scholar
  377. Van Furth, R., 1980, Cells of the mononuclear phagocyte system. Nomenclature in terms of sites and conditions, in Mononuclear Phagocytes: Functional Aspects ( R. Van Furth, ed.), pp. 1–30, Martinus Nijhoff, Dordrecht.Google Scholar
  378. Van Furth, R., 1988, Phagocytic cells: Development and distribution of mononuclear phagocytes in normal steady state and inflammation, in Inflammation: Basic Principles and Clinical Correlates ( J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds.), pp. 281–295, Raven Press, New York.Google Scholar
  379. Van Furth, R., 1989, Origin and turnover of monocytes and macrophages, Curr. Top. Pathol. 79: 125–150.PubMedCrossRefGoogle Scholar
  380. Van Furth, R., and Cohn, Z. A., 1968, The origin and kinetics of mononuclear phagocytes, J. Exp. Med. 128: 415–433.PubMedCrossRefGoogle Scholar
  381. Van Furth, R., and Diesselhoff-den Dulk, M. M. C., 1970, The kinetics of promonocytes and monocytes in the bone marrow, J. Exp. Med. 132: 813–828.PubMedCrossRefGoogle Scholar
  382. Van Furth, R., Hirsch, J. G., and Fedorko, M. E., 1970, Morphology and peroxidase cytochemistry of mouse promonocytes, monocytes and macrophages, J. Exp. Med. 132: 794–805.PubMedCrossRefGoogle Scholar
  383. Van Furth, R., Cohn, Z. A., Hirsch, J. G., Humphrey, J. H., Spector, W. G., and Langevoort, H. L., 1972, The mononuclear phagocyte system: A new classification of macrophages, monocytes, and their precursor cells, Bull. WHO 46: 845–852.PubMedGoogle Scholar
  384. Van Furth, R., Diesselhoff-den Dulk, M. M. C., Sluiter, W., and Van Dissel, J. T., 1985, New perspectives on the kinetics of mononuclear phagocytes, in Mononuclear Phagocytes: Characteristics, Physiology and Function ( R. Van Furth, ed.), pp. 201–208, Martinus Nijhoff, The Hague.CrossRefGoogle Scholar
  385. Van Oss, C. J., 1986, Phagocytosis: An overview, Methods Enzymol. 132: 3–15.PubMedCrossRefGoogle Scholar
  386. Van Rees, E. P., Dijkstra, C. D., Van der Ende, M. B., Janse, E. M., and Sminia, T., 1988, The ontogenetic development of macrophage subpopulations and Ia-positive non-lymphoid cells in gut-associated lymphoid tissue of the rat, Immunology 63: 79–85.PubMedGoogle Scholar
  387. Van Rooyen, N., 1990, Antigen processing and presentation in vivo: The microenvironment as a crucial factor, Immunol. Today 11: 436–439.CrossRefGoogle Scholar
  388. Van Rooyen, N., Kors, N., and Kraal, G., 1989, Macrophage subset repopulation in the spleen: Differential kinetics after liposome-mediated elimination, J. Leukocyte Biol. 45: 97–104.Google Scholar
  389. Van Seventer, G. A., Shimizu, Y., and Shaw, S., 1991, Roles of multiple accessory molecules in T-cell activation, Curr. Opin. Immunol. 3: 294–303.PubMedCrossRefGoogle Scholar
  390. Van Vliet, E., Melis, M., and Van Ewijk, W., 1984, Monoclonal antibodies to stromal cell types of the mouse thymus, Eur. J. Immunol. 14: 524–529.PubMedCrossRefGoogle Scholar
  391. Van Vliet, E., Melis, M., and Van Ewijk, W., 1985, Marginal zone macrophages in the mouse spleen identified by a monoclonal antibody. Anatomical correlation with a B cell subpopulation, J Histochem. Cytochem. 33: 40–44.PubMedCrossRefGoogle Scholar
  392. Varesio, L., Landolfo, S., Giovarelli, M., and Forni, G., 1980, The macrophage as the social interconnection within the immune system, Dev. Comp. Immunol. 4: 11–19.PubMedCrossRefGoogle Scholar
  393. Vogel, S. N., and Hogan, M. M., 1990, Role of cytokines in endotoxin-mediated host responses, in Immunophysiology: The Role of Cells and Cytokines in Immunity and Inflammation ( J. J. Oppenheim and E. M. Shevach, eds.), pp. 238–258, Oxford University Press, New York.Google Scholar
  394. Vogt, C., Noé, G., and Rich, I. N., 1991, The role of the blood island during normal and 5-fluorouracilperturbated hemopoiesis, Blood Cells 17: 105–125.PubMedGoogle Scholar
  395. Volkman, A., and Gowans, J. L., 1965, The origin of macrophages from bone marrow in the rat, Br. J. Exp. Pathol. 46: 62–70.PubMedGoogle Scholar
  396. Volkman, A., Chang, N. C., Strausbauch, P. H., and Morahan, P. S., 1983, Differential effects of chronic monocyte depletion on macrophage populations, Lab. Invest. 49: 291–298.PubMedGoogle Scholar
  397. Wahl, S. M., Hunt, D. A., Bansal, G., McCartney-Francis, N., Ellingsworth, L., and Allen, J. B., 1988, Bacterial cell wall-induced immunosuppression. Role of transforming growth factor ß, J. Exp. Med. 168: 1403–1417.CrossRefGoogle Scholar
  398. Wake, K., Decker, K., Kirn, A., Knook, D. L., McCuskey, R. S., Bouwens, L., and Wisse, E., 1989, Cell biology and kinetics of Kupffer cells in the liver, Int. Rev. Cytol. 118: 173–229.PubMedCrossRefGoogle Scholar
  399. Walker, W. S., 1982, Macrophage functional heterogeneity. Adv. Exp. Med. Biol. 155: 435–441.PubMedCrossRefGoogle Scholar
  400. Walker, W. S., 1987, Origins of macrophage diversity: Functional and phenotypic analysis of cloned populations of mouse splenic macrophages, Cell. Immunol. 107: 417–432.PubMedCrossRefGoogle Scholar
  401. Walker, W. S., 1989, Differential antigen presentation by cloned populations of mouse splenic macrophages, J. Immunol. 143: 2142–2145.PubMedGoogle Scholar
  402. Walker, W. S., and Hester, R. B., 1983, The functional heterogeneity of macrophages, in The Reticuloendothelial System (J. A. Bellanti and H. B. Herscowitz, eds.), pp. 27–42, Plenum Press, New York.Google Scholar
  403. Walker, W. S., and Sun, D., 1991, Constitutive antigen presentation by mouse splenic macrophages is restricted to the progeny of a distinct progenitor population, Cell. Immunol. 133: 342–351.PubMedCrossRefGoogle Scholar
  404. Walker, E. B., Akporiaye, E. T., Warner, N. L., and Stewart, C. C., 1985, Characterization of subsets of bone marrow-derived macrophages by flow cytometry analysis, J. Leukocyte Biol. 37: 121–136.PubMedGoogle Scholar
  405. Warfel, A. H., and Zucker-Franklin, D., 1986, Down-regulation of macrophage lysozyme by lipopolysaccharide and interferon, J. Immunol. 137: 651–655.PubMedGoogle Scholar
  406. Warner, N. L., Moore, M. A. S., and Metcalf, D., 1969, A transplantable myelomonocytic leukemia in BALB/c mice: Cytology, karyotype and muramidase content, J. Natl. Cancer Inst. 43: 963–982.PubMedGoogle Scholar
  407. Watanabe, Y., and Jacob, C. O., 1991, Regulation of MHC class II antigen expression. Opposing effects of tumor necrosis factor-a on IFN-y induced HLA-DR and Ia expression depends on the maturation and differentiation stage of the cell, J. Immunol. 146: 899–905.PubMedGoogle Scholar
  408. Watt, S. M., Gilmore, D. J., Metcalf, D., Cobbold, S. P., Hoang, T. K., and Waldmann, H., 1983, Segregation of mouse hemopoietic progenitor cells using the monoclonal antibody, YBM/42, J. Cell. Physiol. 115: 37–45.PubMedCrossRefGoogle Scholar
  409. Weaver, C. T., and Unanue, E. R., 1990, The costimulatory function of antigen-presenting cells, Immunol. Today 11: 49–55.PubMedCrossRefGoogle Scholar
  410. Weinberg, E. D., 1990, Cellular iron metabolism in health and disease, Drug Metab. Rev. 22:531–579. Williams, G. T., and Williams, W. J., 1983, Granulomatous inflammation—a review, J. Clin. Pathol. 36: 723–733.Google Scholar
  411. Wing, E. J., Gardner, I. D., Ryning, F. W., and Remington, J. S., 1977, Dissociation of effector functions in populations of activated macrophages, Nature 268: 642–644.PubMedCrossRefGoogle Scholar
  412. Wing, E. J., Krahenbuhl, J. L., and Remington, J. S., 1979, Studies of macrophage function during Trichinella spiralis infection in mice, Immunol. 36: 479–485.Google Scholar
  413. Witmer, M. D., and Steinman, R. M., 1984, The anatomy of peripheral lymphoid organs with emphasis on accessory cells: Light-microscopic immunocytochemical studies of mouse spleen, lymph node, and Peyer’s patch, Am. J. Anat. 170: 465–481.PubMedCrossRefGoogle Scholar
  414. Witsell, A. L., and Schook, L. B., 1991, Macrophage heterogeneity occurs through a developmental mechanism, Proc. Natl. Acad. Sci. USA 88: 1963–1967.PubMedCrossRefGoogle Scholar
  415. Wong, A. K.-Y., Bunce, C. M., Lord, J. M., Salt, J., and Brown, G., 1989, Evidence that precursor cells of monocytes and B-lymphocytes are closely related, Exp. Hematol. 17: 968–973.PubMedGoogle Scholar
  416. Woo, H.-J., Shaw, L. M., Messier, J. M., and Mercurio, A. M., 1990, The major non-integrin laminin binding protein of macrophages is identical to carbohydrate binding protein 35 (Mac-2), J. Biol. Chem. 265: 7097–7099.PubMedGoogle Scholar
  417. Wunder, E., Sowala, H., Lepers, M., and Henon, Ph., 1990, The role of monocytes/macrophages in blood stem cell maturation studies with highly purified precursor (CD34+) cells, Bone Marrow Transplant. 5 (Suppl. 1): 11–12.PubMedGoogle Scholar
  418. Yamada, M., Naito, M., and Takahashi, K., 1990, Kupffer cell proliferation and glucan-induced granuloma formation in mice depleted of blood monocytes by strontium-89, J. Leukocyte Biol. 47: 195–205.PubMedGoogle Scholar
  419. Yasaka, T., Mantich, N. M., Boxer, L. A., and Baehner, R. L., 1981, Functions of human monocyte and lymphocyte subsets obtained by countercurrent centrifugal elutriation: Differing functional capacities of human monocyte subsets, J. Immunol. 127: 1515–1518.PubMedGoogle Scholar
  420. Zerlauth, G., Eibl, M. M., and Mannhalter, J. W., 1991, Induction of anti-mycobacterial and anti-listerial activity of human monocytes requires different activation signals, Clin. Exp. Immunol. 85: 90–97.PubMedCrossRefGoogle Scholar
  421. Ziegler-Heitbrock, H. W. L., Passlick, B., and Flieger, D., 1988, The monoclonal antimonocyte antibody My4 stains B lymphocytes and two distinct monocyte subsets in human peripheral blood, Hybridoma 7: 521–527.PubMedCrossRefGoogle Scholar
  422. Ziegler-Heitbrock, H. W. L., Ströbel, M., Fingerle, G., Schlunck, T., Pforte, A., Blumenstein, M., and Haas, J. G., 1991, Small (CD!4+/CD 16+) monocytes and regular monocytes in human blood, Pathobiology 59: 127–130.PubMedCrossRefGoogle Scholar
  423. Zwadlo, G., Bröcker, E.-B., Von Bassewitz, D.-B., Feige, U., and Sorg, C., 1985, A monoclonal antibody to a differentiation antigen present on mature human macrophages and absent from monocytes, J. Immunol. 134: 1487–1492.PubMedGoogle Scholar
  424. Zwadlo, G., Schlegel, R., and Sorg, C., 1986, A monoclonal antibody to a subset of human monocytes found only in the peripheral blood and inflammatory tissues, J. Immunol. 137: 512–518.PubMedGoogle Scholar
  425. Zwadlo, G., Voegeli, R., Schulze Osthoff, K., and Sorg, C., 1987, A monoclonal antibody to a novel differentiation antigen on human macrophages associated with the down-regulatory phase of the inflammatory process, Exp. Cell Biol. 55: 295–304.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Pieter J. M. Leenen
    • 1
  • Priscilla A. Campbell
    • 2
    • 3
  1. 1.Division of Basic Immunology, Department of MedicineNational Jewish Center for Immunology and Respiratory MedicineDenverUSA
  2. 2.Division of Basic Immunology, Department of MedicineNational Jewish Center for Immunology and Respiratory MedicineDenverUSA
  3. 3.The Department of Pathology, the Department of Microbiology and Immunology and The Cancer CenterUniversity of Colorado Health Science CenterDenverUSA

Personalised recommendations