The Cytoskeleton of Human Blood Platelets

  • James G. White
Part of the Blood Cell Biochemistry book series (BLBI, volume 2)

Abstract

Blood platelets are deceptively simple cells. They circulate in the form of flattened disks, dwarfed by the larger erythrocytes and leukocytes surrounding them. The small size of the platelet and difficulty encountered in separating it from blood prevented its recognition for years after all other cellular elements had been defined (Robb-Smith, 1967). Identification was complicated further by problems involved in finding the origin of platelets (Howell, 1890). It was in 1906 that James Homer Wright finally dispelled the theory that platelets were produced by leukocytes (Wright, 1906). Using newly developed Romanowsky polychrome stains, he was able to follow the origin of platelets from fragmentation of megakaryocytes (Wright, 1910). However, as late as 1957 some workers still believed that platelets were products of other cells, such as the erythrocyte (Leiter, 1976).

Keywords

Actin Filament Human Platelet Detergent Extraction Parallel Bundle Human Blood Platelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addison, W., 1843, Experimental and practical researches on the structure and function of blood corpuscles on inflammation; and on the origin and nature of tubercles in the lungs, Trans. Prov. Med. Surg. A 11: 233–306.Google Scholar
  2. Beckerle, M. C., O’Halloran, T., and Burridge, K., 1986, Demonstration of a relationship between talin and P-235, a major substrate of the calcium-dependent protease in platelets, J. Cell. Biochem. 30: 259–270.PubMedCrossRefGoogle Scholar
  3. Behnke, O., 1987, Surface membrane clearing of receptor ligand complexes in human blood platelets, J. Cell Sci. 87: 465–472.PubMedGoogle Scholar
  4. Behnke, O., and Zelander, T., 1966, Substructure in negatively stained microtubules of mammalian blood platelets. Exp. Cell Res. 43: 236–239.PubMedCrossRefGoogle Scholar
  5. Bizzozero, J., 1882, Ueber einen neuen Formbestandtheil des Blutes und dessen Rolle bei der Thrombose und der Blutgerrinnung, Arch. Pathol. Anat. Physiol. 90: 261–332.Google Scholar
  6. Bizzozero, J., 1883, D’un nouvel element morphologique du sang et de son importance dans la thrombose et dans la coagulation, Arch. Ital. Biol. 2: 345–362Google Scholar
  7. Bizzozero, J., 1883, D’un nouvel element morphologique du sang et de son importance dans la thrombose et dans la coagulation, Arch. Ital. Biol. 3: 94–121.Google Scholar
  8. Boyles, J., Fox, J. E. B., Phillips, D. R., and Stenberg, P., 1985, Organization of the cytoskeleton in resting, discoid platelets: Preservation of actin filaments by a modified fixation that prevents osmium damage, J. Cell Biol. 101: 1463–1472.PubMedCrossRefGoogle Scholar
  9. Bull, B. S., 1966, The ultrastructure of negatively stained platelets: Some physiological interpretations, Blood 28: 901–912.PubMedGoogle Scholar
  10. Bums, S. M., Smith, C. M., II, Tukey, D. T., Clawson, C. C., and White J, G., 1986, Micropipette aspiration of human platelets following exposure to aggregating agents, Arteriosclerosis 6: 321–325.Google Scholar
  11. Clementson, K. J., 1985, Glycoproteins of the platelet plasma membrane, in Platelet Membrane Glycoproteins ( J. N. George, A. T. Nurden, and D. R. Phillips, eds.), pp. 51–86, Plenum Press, New York.CrossRefGoogle Scholar
  12. Cohen, I., Gerrard, J. M., and White, J. G., 1982, Ultrastructure of clots during isometric contraction, J. Cell Biol. 93: 775–787.PubMedCrossRefGoogle Scholar
  13. Escolar, G., Krumwiede, M., and White, J. G., 1986, Organization of the actin cytoskeleton of resting and activated platelets in suspension, Am. J. Pathol. 123: 86–94.PubMedGoogle Scholar
  14. Escolar, G., Leistikow, E. A., and White, J. G., 1988, Human platelet fibrinogen receptors do not undergo redistribution during surface activation, Blood 72: 321a.Google Scholar
  15. Fox, J, E. B., 1985a, Identification of actin-binding protein as the protein linking the membrane skeleton to glycoproteins on platelet plasma membranes, J. Biol. Chem. 260: 11970–11977.PubMedGoogle Scholar
  16. Fox, J. E. B., 19856, Linkage of a membrane skeleton to integral membrane glycoproteins in human platelets. Identification of the glycoproteins as glycoprotein Ib, J. Clin. Invest. 76: 1673–1683.Google Scholar
  17. Fox, J. E. B., 1986, Platelet contractile proteins, in Biochemistry of Platelets ( D. R. Phillips and M. A. Shuman, eds.), pp. 115–157, Academic Press, New York.CrossRefGoogle Scholar
  18. Fox, J. E. B., and Phillips, D. R., 1983, Polymerization and organization of actin filaments within platelets, Semin. Hematol. 20: 243–260.PubMedGoogle Scholar
  19. Fox, J. E. B., Reynolds, C. C., Morrow, J. S., and Phillips, D. R., 1987, Spectrin is associated with membrane bound actin filaments in platelets and is hydrolyzed by the Ca+ +-dependent protease during platelet activation, Blood 69: 537–545.PubMedGoogle Scholar
  20. Hoglund, A. S., Karlson, R., Ano, E., Frederiksson, B. E., and Lundberg, U., 1980, Visualization of the peripheral weave of microfilaments in glia cells, J. Muscle Res. Cell Motil. 1: 127–146.PubMedCrossRefGoogle Scholar
  21. Howell, W. H., 1890, Observations upon the occurrence, structure and function of the giant cells of the marrow, J. Morphol. 4: 117–130.CrossRefGoogle Scholar
  22. Kakaiya, R. M., Kiraly, T. L., and Cable, R. G., 1988, Concanavalin A includes patching/capping of the platelet membrane glycoprotein IIb-IIIa complex, Thromb. Haemostasis 59: 281–283.Google Scholar
  23. Karlsson, R., Lassing, I., Hoglund, A. S., and Lindberg, U., 1984, The organization of microfilaments in spreading platelets: A comparison with fibroblasts and glial cells, J. Cell. Physiol. 121: 96–113.PubMedCrossRefGoogle Scholar
  24. Leistikow, E. A., Barnhart, M. I., Albrecht, R. M., and White, J. G., 1988, Redistribution of fibrinogen receptors on surface activated platelets, in Fibrinogen 3. Biochemistry, Biological Functions, Gene Regulation and Expression (Masesson, M. W., ed.), New York. pp. 215–220, Elsevier Science Publishers.Google Scholar
  25. Leistikow, E. A., Barnhart, M. I., and Escolar, G., 1990, Receptor-linked complexes are cleared to the open canalicular system of surface activated platelets, Brit. J. Haematol. 74: 93–100.CrossRefGoogle Scholar
  26. Leiter, S. S., 1976, The human blood platelets: Its derivation from the red blood cells. A morphologic study, Folio Haematol. 103: 878–882.Google Scholar
  27. Lewis, J., White, M. S., Prater, T., Porter, K. R., and Steele, R., 1983, Three-dimensional organization of the platelet cytoskeleton during adhesion in vitro: Observations on human and nonhuman primate cells, Cell Motil. 3: 589–608.PubMedCrossRefGoogle Scholar
  28. Lind, S. E., and Stossel, T. P., 1982, The microfilament network of the platelet, Prog. Hemostasis Thromb. 6: 63–84.Google Scholar
  29. Loftus, J. C., and Albrecht, R. M., 1984, Redistribution of the fibrinogen receptor of human platelets after surface activation. J. Cell Biol. 99: 822–829.PubMedCrossRefGoogle Scholar
  30. Loftus, J. C., Choate, J., and Albrecht, R. M., 1984, Platelet activation and cytoskeletal reorganization: High voltage electron microscopic examination of intact and tritor extracted whole mounts. J. Cell Biol. 98: 2019–2025.PubMedCrossRefGoogle Scholar
  31. Mattson, J. C., and Zwiches, C. A., 1981, Elucidation of the platelet cytoskeleton, Ann. N.Y. Acad. Sci. 370: 11–21.PubMedCrossRefGoogle Scholar
  32. Maupain-Szamier, P., and Pollard, T. D., 1978, Actin filament destruction by osmium tetroxide, J. Cell Biol. 77: 837–852.CrossRefGoogle Scholar
  33. Nachmias, V. T., 1980, Cytoskeleton of human platelets at rest and after spreading, J. Cell Biol. 86: 795–802.PubMedCrossRefGoogle Scholar
  34. Nachmias, V. T., 1983, Platelet and megakaryocyte shape change: Triggered alterations in the cytoskeleton, Semin. Hematol. 20: 261–281.PubMedGoogle Scholar
  35. Nachmias, V. T., and Yoshida, K. I., 1988, The cytoskeleton of the blood platelet: A dynamic structure, Adv. Cell Biol. 2: 181–211.CrossRefGoogle Scholar
  36. Nachmias, V. T., Sullender, J., Fallon, J., and Asch, A., 1980, Observations on the cytoskeleton of human platelets, Thromb. Hemostasis 42: 1661–1666.Google Scholar
  37. Nurden, A. T., 1985, Glycoprotein defects responsible for abnormal platelet function in inherited disorders, in Platelet Membrane Glycoproteins ( J. N. George, A. T. Nurden, and D. R. Phillips, eds.), pp. 357–387, Plenum Press, New York.CrossRefGoogle Scholar
  38. Ris, H., 1985, The cytoplasmic filament system in critical point-dried whole mounts and plastic embedded sections, J. Cell Biol. 100: 1474–1487.PubMedCrossRefGoogle Scholar
  39. Robb-Smith, A. H. T., 1967, Why the platelets were discovered, Br. J. Haematol. 13: 618–639.PubMedCrossRefGoogle Scholar
  40. Santoso, S., Zimmerman, U., Neppert, J., and Nueller-Eckhardt, C., 1986, Receptor patching and capping of platelet membranes induced by monoclonal antibodies, Blood 67: 343–349.PubMedGoogle Scholar
  41. Schmidt, A., 1877, Experiences sur la coagulation de la fibrin, C.R. Seances Acad. Sci. 84: 112–115.Google Scholar
  42. Schmidt, A., 1882, Recherches sur le role physiologique et pathologique des leucocytes du sang, Arch. Physiol. 9: 513–592.Google Scholar
  43. Schollmeyer, J. V., Rao, G. H. R., and White, J. G., 1978, An actin binding protein in human platelets: Interactions with alpha-actinin on gelation of actin and the influence of cytochalasin B. Am. J. Pathol. 93: 433–446.PubMedGoogle Scholar
  44. Siess, W., 1989, Molecular mechanisms of platelet activation, Physiol. Rev. 69: 58–178.PubMedGoogle Scholar
  45. Small, J. V., 1981, Organization of actin in the leading edge of cultured cells: Influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks, J. Celt Biol. 91: 695–704.CrossRefGoogle Scholar
  46. Small, J. V., 1988, The actin cytoskeleton, Electron Microsc. Rev. 1: 155–174.PubMedCrossRefGoogle Scholar
  47. Tablin, F., and Taube, D., 1987, Platelet intermediate filaments: Detection of a vimentin protein in human and bovine platelets. Cell Motil. Cytoskel. 8: 61–67.CrossRefGoogle Scholar
  48. White, J. G., 1968, Fine structural alterations induced in platelets by adenosine diphosphate, Blood 31: 604–622.PubMedGoogle Scholar
  49. White, J. G., 1969, The submembrane filaments of blood platelets, Am. J. Pathol. 56: 267.PubMedGoogle Scholar
  50. White, J. G., 1970, Combined nephelometric and electron microscopic study of the platelet release reaction, in Platelet Adhesion and Aggregation in Thrombosis: Countermeasures, (E. F. Mammen, G. H. Anderson, and M. I. Barnhart, eds.), pp. 73–91, F. G. Schathauer Verlag, New York (Thromb. Diath. Haemorrh. Suppl. 42: 73–91 ).Google Scholar
  51. White, J. G., 1971a, Platelet microtubules and microfilaments: Effects of cytochalasin B on structure and function in Platelet Aggregation (J. Caen, ed.), pp. 15–52, Masson et Cie., Paris.Google Scholar
  52. White, J. G., 1971b, The ultrastructural cytochemistry and physiology of blood platelets, in The Platelet ( F. K. Mostafi and K. M. Brinkhous, eds.), pp. 873–915, Williams and Wilkins, Baltimore.Google Scholar
  53. White, J. G., 1971a, Platelet morphology, in The Circulating Platelet ( S. A. Johnson, ed.), pp. 45–121, Academic Press, New York.Google Scholar
  54. White, J. G., 1983, The morphology of platelet function, in Methods in Hematology, Series 8L. Measurements of Platelet Function ( L. A. Harker and T. S. Zimmerman, eds.), pp. 1–25, Churchill-Livingstone, New York.Google Scholar
  55. White, J. G., 1984, Arrangements of actin filaments in the cytoskeleton of human platelets, Am. J. Pathol. 117: 207–217.PubMedGoogle Scholar
  56. White, J. G., 1987, An overview of platelet structural physiology. Scanning Microsc. 1: 1677–1700.PubMedGoogle Scholar
  57. White, J. G., and Bums, S. M., 1984, Morphometry of platelet internal contraction, Am. J. Pathol. 115: 412–417.PubMedGoogle Scholar
  58. White, J. G., and Gerrard, J. M., 1980, The cell biology of platelets, in The Cell Biology of Inflammation: Handbook of Inflammation, Vol. 2 ( G. Weissman, ed.), pp. 83–143, Elsevier/North-Holland, New York.Google Scholar
  59. White, J. G., and Krumwiede, M., 1973, Influence of cytochalasin B on the shape change induced in platelets by cold, Blood 41: 823–832.PubMedGoogle Scholar
  60. White, J. G., and Krumwiede, M., 1987, Further studies of the secretory pathway in thrombin stimulated human platelets, Blood 69: 1196–1203.PubMedGoogle Scholar
  61. White, J. G., and Rao, G. H. R. 1983, Influence of a microtubule stabilizing agent on platelet structural physiology, Am. J. Pathol. 112: 207–217.PubMedGoogle Scholar
  62. White, J. G., and Sauk, J. J., 1984, Microtubule coils in spread blood platelets, Blood 64: 470–478.PubMedGoogle Scholar
  63. White, J. G., Krivit, W., and Vernier, R., 1965, The platelet-fibrin relationship in human blood clots: An ultrastructural study utilizing feritin conjugated anti-human fibrinogen antibody, Blood 25: 241.PubMedGoogle Scholar
  64. White, J. G., Bums, S. M., Hasegawa, D., and Johnson, M., 1984a, Micropipette aspiration of human blood platelets. A defect in the Bernard-Soulier’s syndrome, Blood 63: 1249–1252.PubMedGoogle Scholar
  65. White, J. G., Bums, S. M., Tukey, D., Smith, C., and Clawson, C. C., 1984b, Micropipette aspiration of human platelets: Influence of microtubules and actin filaments on deformability, Blood 64: 210–214.PubMedGoogle Scholar
  66. White, J. G., Escolar, G., and Leistikow, E. A., 1989, GPIIb-IIIa receptor mobility within membranes of surface and suspension activated platelets does not depend on assembly and contraction of cytoplasmic actin, Assoc. Am. Phys. (accepted for presentation).Google Scholar
  67. Wolpers, C., and Ruska, H., 1939, Strukturuntersuchungen zur Blutgerinnung, Klin. Wochenschr. 23:1077–1081; 1111–1117.Google Scholar
  68. Wright, J. H., 1906, The origin and nature of the blood plates, Boston Med. Surg. J. 154: 643–645.CrossRefGoogle Scholar
  69. Wright, J. H., 1910, The histogenesis of the blood platelets, J. Morphol. 21: 263–278.CrossRefGoogle Scholar
  70. Zabel, C. R., and Manuel, H., 1984, The platelet reticular network, J. Ultrastruct. Res. 89: 89–97.CrossRefGoogle Scholar
  71. Zucker, M. B., and Borelli, J., 1954, Reversible alterations in platelet morphology produced by anticoagulants and by cold. Blood 30: 625–630.Google Scholar
  72. Zucker, M. B., and Nachmias, V. T., 1985, Platelet activation, Arteriosclerosis 5: 2–18.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • James G. White
    • 1
  1. 1.Departments of Laboratory Medicine and Pathology, and PediatricsUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations