Spectrin-Actin Interactions

  • Greg B. Ralston
Part of the Blood Cell Biochemistry book series (BLBI, volume 1)


The protein spectrin was first reported in 1968 in water-soluble extracts from erythrocyte membranes (Marchesi and Steers, 1968). Although for some time it was believed that spectrin represented a specific erythrocyte adaptation, in recent years spectrin and spectrinlike proteins have been found in a wide range of other cell types (e.g., see Goodman et al., 1981). These nonerythroid forms of spectrin all share with erythrocyte spectrin a common set of properties: they are proteins of high molecular mass, comprising two distinct subunits of approximately 250,000 and 230,000 Da, respectively; they bind calmodulin in a calcium-dependent manner, though with greatly differing affinities; they bind to actin filaments; and they are associated with the cell membranes through interaction with other proteins, particularly ankyrin (Bennett, 1985). Certainly in the red blood cell, and probably in other cell types, the major functional role of spectrin is to stabilize the membrane, and to provide a linkage for actin filaments to the membrane. While the red cell may be an inadequate model for other cell types, the organization of the erythrocyte cytoskeleton and its role in maintaining erythrocyte shape and deformability are now reasonably well understood, at least in broad terms, and the findings from the red cell give at least an indication of the organization of such molecules in other cells. The present discussion will be limited to erythrocyte spectrin.


Actin Filament Erythrocyte Membrane Human Erythrocyte Hereditary Spherocytosis Membrane Skeleton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. M., and Tyler, J. M., 1980, State of spectrin phosphorylation does not affect erythrocyte shape or spectrin binding to erythrocyte membranes, J. Biol. Chem. 255: 1259–1265.PubMedGoogle Scholar
  2. Anderson, J. P., and Morrow, J. S., 1987, The interaction of calmodulin with human erythrocyte spectrin, J. Biol. Chem. 262: 6365–6372.PubMedGoogle Scholar
  3. Anderson, R. A., and Lovrien, R. E., 1984, Glycophorin is linked by band 4.1 to the human erythrocyte membrane skeleton, Nature 307: 655–658.PubMedGoogle Scholar
  4. Anderson, R. A., and Marchesi, V. T., 1985, Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide, Nature 318: 295–298.PubMedGoogle Scholar
  5. Anstee, D. J., Parsons, S. E., Ridgwell, K., Tanner, M. J. A., Merry, A. H., Thomson, E. E., Judson, P. R., Johnson, P., Bates, S., and Fraser, I. D., 1984, Two individuals with elliptocytocytic red cells apparently lack three minor erythrocyte membrane sialoglycoproteins, Biochem. J. 218: 615–619.PubMedGoogle Scholar
  6. Atkinson, M. A. L., Morrow, J. S., and Marchesi, V. T., 1982, The polymeric state of actin in the human erythrocyte cytoskeleton, J. Cell Biochem. 18: 493–505.PubMedGoogle Scholar
  7. Beaven, G. H., Jean-Baptiste, L., Ungewickell, E., Baines, A. J., Shahbakhti, F., Pinder, J. C., Lux, S. E., and Gratzer, W. B., 1985, An examination of the soluble oligomeric complexes extracted from the red cell membrane and their relation to the membrane cytoskeleton, Eur. J. Cell Biol. 36: 299–306.PubMedGoogle Scholar
  8. Bennett, V., 1985, The membrane skeleton of human erythrocytes and its implications for more complex cells, Annu. Rev. Biochem. 54: 273–304.PubMedGoogle Scholar
  9. Bennett, V., and Stenbuck, P., 1979, The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes, Nature 280: 468–473.PubMedGoogle Scholar
  10. Bennett, V., and Stenbuck, P., 1980a, Human erythrocyte ankyrin: Purification and properties, J. Biol. Chem. 255: 2540–2548.PubMedGoogle Scholar
  11. Bennett, V., and Stenbuck, P., 1980b, Association between ankyrin and the cytoplasmic domain of band 3 from the human erythrocyte membrane, J. Biol. Chem. 255: 6424–6432.PubMedGoogle Scholar
  12. Brenner, S. L., and Korn, E., 1979, Spectrin—actin interaction, J. Biol. Chem. 254: 8620–8627.PubMedGoogle Scholar
  13. Brenner, S. L., and Korn, E., 1980, Spectrin—actin complex isolated from sheep erythrocytes accelerates actin polymerization by simple nucleation, J. Biol. Chem. 255: 1670–1676.PubMedGoogle Scholar
  14. Burns, N. R., and Gratzer, W. B., 1985, Interaction of calmodulin with the red cell and its membrane skeleton and with spectrin, Biochemistry 24: 3070–3074.PubMedGoogle Scholar
  15. Byers, T. J., and Branton, D., 1985, Visualization of the protein associations in the erythrocyte membrane skeleton, Proc. Natl. Acad. Sci. USA 82: 6153–6155.PubMedGoogle Scholar
  16. Calvert, R., Bennett, P., and Gratzer, W. B., 1980a, Properties and structural role of the subunits of human spectrin, Eur. J. Biochem. 107: 355–361.PubMedGoogle Scholar
  17. Calvert, R., Ungewickell, E., and Gratzer, W. B., 1980b, A conformational study of human spectrin, Eur. J. Biochem. 107: 363–367.PubMedGoogle Scholar
  18. Canham, P. B., 1970, Minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, J. Theor. Biol. 26: 61–81.PubMedGoogle Scholar
  19. Cheung, W. Y., 1980, Calmodulin plays a pivotal role in cellular regulation, Science 207: 19–27.PubMedGoogle Scholar
  20. Cohen, C. M., and Foley, S. F., 1986, Organization of the spectrin—actin—band 4.1 ternary complex and its regulation by band 4.1 phosphorylation, in: Membrane Skeletons and Cytoskeletal—Membrane Associations ( V. Bennett, C. M. Cohen, S. E. Lux, and J. Palek, eds.), pp. 211–222, Liss, New York.Google Scholar
  21. Cohen, C. M., and Korsgren, C., 1980, Band 4.1 causes spectrin—actin gels to become thixotropic, Biochem. Biophys. Res. Commun. 97: 1429–1435.PubMedGoogle Scholar
  22. Cohen, C. M., and Langley, R. C., Jr., 1984, Functional characterization of human erythrocyte spectrin a and ß chains: Association with actin and protein 4.1, Biochemistry 23: 4488–4495.PubMedGoogle Scholar
  23. Cohen, C. M., Tyler, J. M., and Branton, D., 1980, Spectrin—actin associations studied by electron microscopy of shadowed preparations, Cell 21: 875–883.PubMedGoogle Scholar
  24. Cohen, C. M., Langley, R. C., Foley, S. F., and Korsgren, C., 1984, Functional associations of band 4.1 in the erythrocyte membrane skeleton and their role in inherited membrane skeletal abnormalities, Prog. Clin. Biol. Res. 159: 13–29.PubMedGoogle Scholar
  25. Cohen, A. M., Liu, S.-C., Lawler, J., Derick, L., and Palek, J., 1988, Identification of the protein 4.1 binding site to phospholipid vesicles, Biochemistry 27: 614–619.PubMedGoogle Scholar
  26. Dintenfass, L., 1971, The rheology of blood in vascular disease, J. R. Coll. Physicians London 5: 231–240.Google Scholar
  27. Eder, P. S., Soong, C.-J., and Tao, M., 1986, Phosphorylation reduces the affinity of protein 4.1 for spectrin, Biochemistry 25: 1764–1770.PubMedGoogle Scholar
  28. Elgsaeter, A., and Branton, D., 1974, Intramembrane particle aggregation in erythrocyte ghosts. I. The effects of protein removal, J. Cell Biol. 63: 1018–1030.PubMedGoogle Scholar
  29. Elgsaeter, A., Shotton, D., and Branton, D., 1976, Intramembrane particle aggregation in erythrocyte ghosts. II. The influence of spectrin aggregation. Biochim. Biophys. Acta 426: 101–122.PubMedGoogle Scholar
  30. Elliott, C., and Ralston, G. B., 1984, Solubilization of human erythrocyte band 4.1 protein in the non-ionic detergent Tween 20, Biochim. Biophys. Acta 775: 313–319.PubMedGoogle Scholar
  31. Fairbanks, G., Steck, T. L., and Wallach, D. F. H., 1971, Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane, Biochemistry 10: 2606–2617.PubMedGoogle Scholar
  32. Fowler, V., and Bennett, V., 1978, Association of spectrin with its membrane attachment site restricts lateral mobility of human erythrocyte integral membrane proteins, J. Supramol. Struct. 8: 215–221.Google Scholar
  33. Fowler, V., and Bennett, V., 1984, Erythrocyte membrane tropomyosin, J. Biol. Chem. 259: 5978–5989.PubMedGoogle Scholar
  34. Fowler, V., and Branton, D., 1977, Lateral mobility of human erythrocyte integral membrane proteins, Nature 268: 23–26.PubMedGoogle Scholar
  35. Fowler, V., and Taylor, D. L., 1980, Spectrin plus band 4.1 cross-link actin. Regulation by micromolar calcium, J. Cell Biol. 85: 361–376.PubMedGoogle Scholar
  36. Furthmayr, H., 1978, Glycophorins A, B, and C: A family of sialoglycoproteins. Isolation and preliminary characterisation of trypsin derived peptides, J. Supramol. Struct. 9: 79–95.PubMedGoogle Scholar
  37. Gardner, K., and Bennett, V., 1986, A new erythrocyte membrane-associated protein with calmodulin binding activity: identification and purification, J. Biol. Chem. 261: 1339–1348.PubMedGoogle Scholar
  38. Gardner, K., and Bennett, V., 1987, Modulation of spectrin—actin assembly by erythrocyte adducin, Nature 328: 359–362.PubMedGoogle Scholar
  39. Glenney, J. R., Glenney, P., and Weber, K., 1982, Erythroid spectrin, brain fodrin, and intestinal brush border proteins (TW-260/240) are related molecules containing a common calmodulin-binding subunit bound to a variant cell type-specific subunit, Proc. Natl. Acad. Sci. USA 79: 4002–4006.PubMedGoogle Scholar
  40. Goodman, S. R., Zagon, I. S., and Kulikowski, R. R., 1981, Identification of a spectrin-like protein in nonerythroid cells, Proc. Natl. Acad. Sci. USA 78: 7570–7574.PubMedGoogle Scholar
  41. Goodman, S. R., Yu, J., Whitfield, C. F., Culp, E. N., and Posnak, E. J., 1982, Erythrocyte membrane skeletal protein bands and b are sequence-related phosphoproteins, J. Biol. Chem. 257: 4564–4569.PubMedGoogle Scholar
  42. Goodman, S. R., Krebs, K. E., Whitfield, C. F., Riederer, B. M., and Zagon, I. S., 1988, Spectrin and related molecules, CRC Crit. Rev. Biochem. 23: 171–234.PubMedGoogle Scholar
  43. Gordon, D. J., Boyer, J. L., and Korn, E. D., 1977, Comparative biochemistry of non-muscle actins, J. Biol. Chem. 252: 8300–8309.PubMedGoogle Scholar
  44. Gratzer, W. B., and Beaven, G. H., 1975, Properties of the high molecular weight protein spectrin from human erythrocyte membranes, Eur. J. Biochem. 58: 403–409.PubMedGoogle Scholar
  45. Greenquist, A. C., Shohet, S. B., and Bernstein, S. E., 1978, Marked reduction of spectrin in hereditary spherocytosis in the common house mouse, Blood 51: 1149–1155.PubMedGoogle Scholar
  46. Haest, C. W. M., 1982, Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane, Biochim. Biophys. Acta 694: 331–352.PubMedGoogle Scholar
  47. Hainfeld, J. F., and Steck, T. L., 1977, The sub-membrane reticulum of the human erythrocyte: A scanning electron microscope study, J. Supramol. Struct. 6: 301–311.PubMedGoogle Scholar
  48. Hanspal, M. K., and Ralston, G. B., 1981, Purification of a trypsin-insensitive fragment of spectrin from human erythrocyte membranes, Biochim. Biophys. Acta 669: 133–139.PubMedGoogle Scholar
  49. Hanspal, M. K., and Ralston, G. B., 1982, Binding of an 80,000 dalton fragment of spectrin to intact spectrin, Biochim. Biophys. Acta 709: 105–109.PubMedGoogle Scholar
  50. Harris, H. W., and Lux, S. E., 1980, Structural characterization of the phosphorylation sites of human erythrocyte spectrin, J. Biol. Chem. 255: 11965–11972.Google Scholar
  51. Husain, A., Howlett, G. J., and Sawyer, W. H., 1984, The interaction of calmodulin with human and avian spectrin, Biochem. Biophys. Res. Commun. 122: 1194–1200.PubMedGoogle Scholar
  52. Husain, A., Howlett, G. J., and Sawyer, W. H., 1985, The interaction of calmodulin with erythrocyte membrane proteins, Biochem. Int. 10:1–12.Google Scholar
  53. Husain-Chishti, A., Levin, A., and Branton, D., 1988, Abolition of actin-bundling by phosphorylation of human erythrocyte protein 4.9, Nature 334: 718–720.PubMedGoogle Scholar
  54. Jarrett, H. W., and Penniston, J. T., 1977, Partial purification of the Ca2+-Mg2+ ATPase activator from human erythrocytes: Its similarity to the activator of 3’,5’-cyclic nucleotide phosphodiesterase, Biochem. Biophys. Res. Commun. 77: 1210–1216.PubMedGoogle Scholar
  55. Kam, Z., Josephs, R., Eisenberg, H., and Gratzer, W. B., 1977, Structural study of spectrin from human erythrocyte membranes, Biochemistry 16: 5568–5572.PubMedGoogle Scholar
  56. Knowles, W. J., Speicher, D. W., Morrow, J. S., and Marchesi, V. T., 1979, Renaturation of the chemical domains of human erythrocyte spectrin, J. Cell Biol. 83 (2, Pt. 2): 272a.Google Scholar
  57. Leto, T. L., and Marchesi, V. T., 1984, A structural model of human erythrocyte protein 4.1, J. Biol. Chem. 259: 4603–4608.PubMedGoogle Scholar
  58. Lichtman, M. A., 1973, Rheology of leukocytes, leukocyte suspensions and blood in leukaemia. Possible relationships to clinical manifestations, J. Clin. Invest. 52: 350–358.PubMedGoogle Scholar
  59. Lin, D. C., and Lin, S., 1979, Actin polymerization induced by a motility-related high-affinity cytochalasin binding complex from human erythrocyte membranes, Proc. Natl. Acad. Sci. USA 76: 2345–2349.PubMedGoogle Scholar
  60. Ling, E., Gardner, K., and Bennett, V., 1986, Modulation of red cell band 4.1 function by c-AMP-dependent kinase and protein kinase C phosphorylation, J. Biol. Chem. 261: 13875–13878.PubMedGoogle Scholar
  61. Ling, E., Danilov, Y. N., and Cohen, C. M., 1988, Modulation of red cell band 4.1 function by cAMP-dependent kinase and protein kinase C phosphorylation, J. Biol. Chem. 263: 2209–2216.PubMedGoogle Scholar
  62. Liu, S.-C., and Palek, J., 1980, Spectrin tetramer—dimer equilibrium and the stability of erythrocyte membrane cytoskeletons, Nature 285: 586–588.PubMedGoogle Scholar
  63. Liu, S.-C., and Palek, J., 1984, Hemoglobin enhances the self-association of spectrin heterodimers in human erythrocytes, J. Biol. Chem. 259: 11556–11562.PubMedGoogle Scholar
  64. Liu, S.-C., Palek, J., Prchal, J., and Castleberry, R. P., 1981, Altered spectrin dimer—dimer association and instability of erythrocyte membrane skeletons in hereditary pyropoikilocytosis, J. Clin. Invest. 68: 597–605.PubMedGoogle Scholar
  65. Liu, S.-C., Palek, J., and Prchal, J. T., 1982, Defective spectrin dimer—dimer association in hereditary elliptocytosis. Proc. Natl. Acad. Sci. USA 79: 2072–2076.PubMedGoogle Scholar
  66. Liu, S.-C., Windisch, P., Kim, S., and Palek, J., 1984, Oligomeric states of spectrin in normal erythrocyte membranes: Biochemical and electron microscopic studies, Cell 37: 587–594.PubMedGoogle Scholar
  67. Liu, S.-C., Derick, L. H., and Palek, J., 1987, Visualization of the hexagonal lattice in the erythrocyte membrane skeleton, J. Cell Biol. 104: 527–536.PubMedGoogle Scholar
  68. Lux, S. E., 1979, Spectrin—actin membrane skeleton of normal and abnormal red blood cells, Semin. Hematol. 16: 22–51.Google Scholar
  69. Marchesi, S. L., Steers, E., Marchesi, V. T., and Tillack, T. W., 1970, Physical and chemical properties of a protein isolated from red cell membranes, Biochemistry 9: 50–57.PubMedGoogle Scholar
  70. Marchesi, V. T., 1985, Stabilizing infrastructure of cell membranes, Annu. Rev. Cell Biol. 1: 531–561.PubMedGoogle Scholar
  71. Marchesi, V. T., and Steers, E., 1968, Selective solubilization of a protein component of the red cell membrane, Science 159: 203–204.PubMedGoogle Scholar
  72. Marinetti, G. V., and Crain, R. C., 1978, Topology of amino-phospholipids in the red cell membrane, J. Supramol. Struct. 8: 191–213.Google Scholar
  73. Matsuzaki, F., Sutoh, K., and Ikai, A., 1985, Structural unit of the erythrocyte cytoskeleton. Isolation and electron microscopic examination, Eur. J. Cell Biol. 39: 153–160.PubMedGoogle Scholar
  74. Minton, A. P., 1983, The effect of volume occupancy upon the thermodynamic activity of proteins: Some biochemical consequences, Mol. Cell. Biochem. 55: 119–140.PubMedGoogle Scholar
  75. Mische, S. M., Mooseker, M. S., and Morrow, J., 1987, Erythrocyte adducin: A calmodulin-regulated actin-bundling protein that stimulates spectrin—actin binding, J. Cell Biol. 105: 2837–2845.PubMedGoogle Scholar
  76. Mombers, C., Van Dijck, P. W. M., Van Deenen, L. L. M., De Gier, J., and Verkleij, A., 1977, The interaction of spectrin—actin and synthetic phospholipids, Biochim. Biophys. Acta 470: 152–160.PubMedGoogle Scholar
  77. Morris, M. B., and Ralston, G. B., 1984, A reappraisal of the self-association of human spectrin, Biochim. Biophys. Acta 788: 132–137.PubMedGoogle Scholar
  78. Morris, M. B., and Ralston, G. B., 1985, Determination of the parameters of protein self-association by direct fitting to the omega function, Biophys. Chem. 23: 49–61.PubMedGoogle Scholar
  79. Morrow, J. S., and Marchesi, V. T., 1981, Self-assembly of spectrin oligomers in vitro: Basis for a dynamic cytoskeleton, J. Cell Biol. 88: 463–468.PubMedGoogle Scholar
  80. Morrow, J. S., Speicher, D. W., Knowles, W. J., Hsu, C. J., and Marchesi, V. T., 1980, Identification of functional domains of human erythrocyte spectrin, Proc. Natl. Acad. Sci. USA 77: 6592–6596.PubMedGoogle Scholar
  81. Mueller, T. J., and Morrison, M., 1981, Glycoconnectin (PAS 2) a membrane attachment site for the human erythrocyte cytoskeleton, in: Erythrocyte Membranes 2: Recent Clinical and Experimental Advances (W. C. Kruckeberg, J. W. Eaton, and G. J. Brewer, eds.), pp. 95–112, Liss, New York.Google Scholar
  82. Nakashima, K., and Beutler, E., 1979, Comparison of structure and function of human erythrocyte and human muscle actin, Proc. Natl. Acad. Sci. USA 76: 935–938.PubMedGoogle Scholar
  83. Nishizuka, Y., 1986, Studies and perspectives of protein kinase C, Science 233: 305–312.PubMedGoogle Scholar
  84. Ohanian, V., and Gratzer, W. B., 1984, Preparation of red-cell membrane cytoskeletal constituents and characterization of protein 4.1, Eur. J. Biochem. 144: 375–379.PubMedGoogle Scholar
  85. Ghanian, V., Wolfe, L. C., John, K. M., Pinder, J. C., Lux, S. E., and Gratzer, W. B., 1984, Analysis of the ternary interaction of the red cell membrane skeletal proteins spectrin, actin, and 4.1, Biochemistry 23: 4416–4420.Google Scholar
  86. Owens, W., Mueller, T. J., and Morrison, M., 1980, A minor sialoglycoprotein of the human erythrocyte membrane, Arch. Biochem. Biophys. 204: 247–254.PubMedGoogle Scholar
  87. Palek, J., and Liu, S.-C., 1981, Alterations of spectrin assembly in the red cell membrane: Functional consequences. Scand. J. Clin. Lab. Invest. 41 (Suppl. 156): 131–138.Google Scholar
  88. Pasternack, G. R., Anderson, R. A., Leto, T. L., and Marchesi, V. T., 1985, Interactions between protein 4.1 and band 3. An alternative binding site for an element of membrane skeleton, J. Biol. Chem. 260: 36763683.Google Scholar
  89. Patel, V. P., and Fairbanks, G., 1981, Spectrin phosphorylation and shape change of human erythrocyte ghosts, J. Cell Biol. 88: 430–440.PubMedGoogle Scholar
  90. Patel, V. P., and Fairbanks, G., 1986, Relationship of major phosphorylation reactions and MgATPase activities to ATP-dependent shape change of human erythrocyte membranes, J. Biol. Chem. 261: 3170–3177.PubMedGoogle Scholar
  91. Pinder, J. C., and Gratzer, W. B., 1983, Structural and dynamic states of actin in the erythrocyte, J. Cell Biol. 96: 768–775.PubMedGoogle Scholar
  92. Pinder, J. C., Bray, D., and Gratzer, W. B., 1975, Actin polymerization induced by spectrin, Nature 258: 765766.Google Scholar
  93. Pinder, J. C., Ungewickell, E., Bray, D., and Gratzer, W. B., 1978a, The spectrin—actin complex and erythrocyte shape, J. Supramol. Struct. 8: 439–445.PubMedGoogle Scholar
  94. Pinder, J. C., Bray, D., and Gratzer, W. B., 1978b, Control of interaction of spectrin and actin by phosphorylation, Nature 270: 752–754.Google Scholar
  95. Pinder, J. C., Ungewickell, E., Calvert, R., Moms, E., and Gratzer, W. B., 1979, Polymerization of G-actin by spectrin preparations: Identification of the active constituent, FEBS Lett. 104: 396–400.PubMedGoogle Scholar
  96. Pinder, J. C., Clerk, S. E., Baines, A. J., Morris, E., and Gratzer, W. B., 1981, The construction of the red cell cytoskeleton, in: The Red Cell: Fifth Ann Arbor Conference ( G. M. Brewer, ed.). pp. 343–354, Liss, New York.Google Scholar
  97. Pinder, J. C., Ghanian, V., and Gratzer, W. B., 1984, Spectrin and protein 4.1 as an actin filament capping complex, FEBS Lett. 169: 161–164.PubMedGoogle Scholar
  98. Podgorski, A., and Elbaum, D., 1985, Properties of red cell membrane proteins: Mechanism of spectrin and band 4.1 interaction, Biochemistry 24: 7871–7876.PubMedGoogle Scholar
  99. Podolski, J. L., and Steck, T. L., 1988, Association of deoxyribonuclease I with the pointed ends of actin filaments in human red blood cell membrane skeletons, J. Biol. Chem. 263: 638–645.PubMedGoogle Scholar
  100. Pollard, T. D., and Cooper, J. A., 1986, Actin and actin-binding proteins, Annu. Rev. Biochem. 55: 987–1035.PubMedGoogle Scholar
  101. Portis, A., Newton, C., Pangborn, W., and Papahadjopoulos, D., 1979, Studies on the mechanism of membrane fusion: Evidence for an intermembrane Cat+—phospholipid complex, synergism with Mgt+, and inhibition by spectrin, Biochemistry 18: 780–790.PubMedGoogle Scholar
  102. Quist, E., 1980, Regulation of erythrocyte membrane shape by Cat+, Biochem. Biophys. Res. Commun. 92: 631–637.PubMedGoogle Scholar
  103. Ralston, G. B., 1975, The isolation of aggregates of spectrin from bovine erythrocyte membranes, Aust. J. Biol. Sci. 28: 259–266.PubMedGoogle Scholar
  104. Ralston, G. B., 1978, Physical chemical studies of spectrin, J. Supramol. Struct. 8: 361–374.PubMedGoogle Scholar
  105. Ralston, G. B., and Crisp, E. A., 1981, The action of organic mercurials on the erythrocyte membrane, Biochim. Biophys. Acta 649: 98–104.PubMedGoogle Scholar
  106. Ralston, G. B., Dunbar, J. C., and White, M. D., 1977, The temperature dependent dissociation of spectrin, Biochim. Biophys. Acta 491: 345–348.PubMedGoogle Scholar
  107. Schatzman, H. J., 1975, Active calcium transport and Ca2 + -activated ATPase in human red cells, Curr. Top. Membr. Transp. 6: 125–168.Google Scholar
  108. Schindler, M., Koppel, D. E, and Sheetz, M. P., 1980, Modulation of membrane protein lateral mobility by polyphosphates and polyamines, Proc. Natl. Acad. Sci. USA 77: 1457–1461.PubMedGoogle Scholar
  109. Sears, D. E., Marchesi, V. T,. and Morrow, J. S., 1986, A calmodulin and a-subunit binding domain in human erythrocyte spectrin, Biochim. Biophys. Acta 870: 432–442.Google Scholar
  110. Shahbakhti, F., and Gratzer, W. B., 1986, Analysis of the self-association of human red cell spectrin, Biochemistry 25: 5969–5975.PubMedGoogle Scholar
  111. Sheetz, M. P., 1979, Integral membrane protein interaction with Triton cytoskeletons of erythrocytes, Biochim. Biophys. Acta 557: 122–134.PubMedGoogle Scholar
  112. Sheetz, M. P., and Casaly, J., 1981, Phosphate metabolite regulation of spectrin interactions, Scand. J. Clin. Lab Invest. 41 (Suppl. 156): 117–122.Google Scholar
  113. Sheetz, M. P., and Sawyer, D., 1978, Triton shells of intact erythrocytes, J. Supramol. Struct. 8:399–412. Sheetz, M. P., and Singer, S. J., 1977, On the mechanism of ATP-induced shape changes in human erythrocyte membranes, J. Cell Biol. 73: 638–646.Google Scholar
  114. Sheetz, M. P., Painter, R. G., and Singer, S. J., 1976, Relationships of the spectrin complex of human erythrocyte membranes to the actomyosins of muscle cells, Biochemistry 15: 4486–4492.PubMedGoogle Scholar
  115. Shen, B. W., Josephs, R., and Steck, T. L., 1984, Ultrastructure of unit fragments of the skeleton of the human erythrocyte membrane, J. Cell Biol. 99: 810–821.PubMedGoogle Scholar
  116. Shen, B. W., Josephs, R., and Steck, T. L., 1986, Ultrastructure of the intact skeleton of the human erythrocyte membrane, J. Cell Biol. 102: 997–1006.PubMedGoogle Scholar
  117. Shiffer, K. A., and Goodman, S. R., 1984, Protein 4.1: Its association with the human erythrocyte membrane, Proc. Natl. Acad. Sci. USA 81: 4404–4408.PubMedGoogle Scholar
  118. Shiffer, K. A., Goerke, J., Duzgunes, N., Fedor, J., and Shohet, S. B., 1988, Interactions of erythrocyte protein 4.1 with phospholipide. A monolayer and liposome study, Biochim. Biophys. Acta 937: 269–280.PubMedGoogle Scholar
  119. Shohet, S. B., 1979, Reconstitution of spectrin-deficient, spherocytic mouse erythrocyte membranes, J. Clin. Invest. 64: 483–494.Google Scholar
  120. Shotton, D. M., Burk, B. E., and Branton, D., 1979, The molecular structure of human erythrocyte spectrin. Biophysical and electron microscopic studies, J. Mol. Biol. 131: 303–329.PubMedGoogle Scholar
  121. Siegel, D. L., and Branton, D., 1985, Partial purification and characterization of an actin-bundling protein, band 4.9, from human erythrocytes, J. Cell Biol. 100: 775–785.PubMedGoogle Scholar
  122. Sobue, K., Muramoto, Y., Fujita, M., and Kakiuchi, S., 1981, Calmodulin-binding protein of erythrocyte cytoskeleton, Biochem. Biophys. Res. Commun. 100: 1063–1070.PubMedGoogle Scholar
  123. Sondag, D., Alloisio, N., Blanchard, D., Ducluzeau, M.-T., Colonna, P., Bachir, D., Bloy, C., Cartron, J.-P., and Delaunay, J., 1987, Gerbich reactivity in 4.1 (—) hereditary elliptocytosis and protein 4.1 level in blood group Gerbich deficiency, Br. J. Haematol. 65: 43–50.PubMedGoogle Scholar
  124. Speicher, D. W., 1986, The present status of erythrocyte spectrin structure: The 106—residue repetitive structure is a basic feature of an entire class of proteins, J. Cell Biochem. 30: 245–258.PubMedGoogle Scholar
  125. Speicher, D. W., and Marchesi, V. T., 1984, Erythrocyte spectrin is comprised of many homologous triple helical segments, Nature 311: 177–180.PubMedGoogle Scholar
  126. Speicher, D. W., Morrow, J. S., Knowles, W. J., and Marchesi, V. T., 1980, Identification of proteolytically resistant domains of human erythrocyte spectrin, Proc. Natl. Acad. Sci. USA 77: 5673–5677.PubMedGoogle Scholar
  127. Speicher, D. W., Morrow, J. S., Knowles, W. J., and Marchesi, V. T., 1982, A structural model of human erythrocyte spectrin, J. Biol. Chem. 257: 9093–9101.PubMedGoogle Scholar
  128. Steck, T. L., 1974, Organization of proteins in the human red blood cell membrane, J. Cell Biol. 62: 119.Google Scholar
  129. Stokke, B. T., and Elgsaeter, A., 1981, Human spectrin VI. A viscometric study, Biochim. Biophys. Acta 640: 640–645.PubMedGoogle Scholar
  130. Stromqvist, M., Backman, L., and Shanbhag, V., 1985, Effect of spectrin dimer on actin polymerization, FEBS Lett. 190: 15–20.PubMedGoogle Scholar
  131. Takakuwa, Y., and Mohandas, N., 1988, Modulation of erythrocyte membrane material properties by Cat+ and calmodulin, J. Clin. Invest. 82: 394–400.PubMedGoogle Scholar
  132. Tilley, L., and Ralston, G. B., 1984, Purification and kinetic characterization of human erythrocyte actin, Biochim. Biophys. Acta 790: 46–52.PubMedGoogle Scholar
  133. Tilley, L., and Ralston, G. B., 1987, Effect of erythrocyte spectrin on actin self-association, Aust. J. Biol. Sci. 40: 27–36.PubMedGoogle Scholar
  134. Tilney, L. G., and Detmers, P., 1975, Actin in erythrocyte ghosts and its association with spectrin, J. Cell Biol. 66: 508–520.PubMedGoogle Scholar
  135. Tsukita, S., Tsukita, S., and Ishikawa, H., 1980, Cytoskeletal network underlying the human erythrocyte membrane, J. Cell Biol. 85: 567–576.PubMedGoogle Scholar
  136. Tsukita, S., Tsukita, S., and Ishikawa, H., 1984, Bidirectional polymerization of g-actin on the human erythrocyte membrane, J. Cell Biol. 98: 1102–1110.PubMedGoogle Scholar
  137. Tyler, J., Hargreaves, W., and Branton, D., 1979, Purification of two spectrin binding proteins: Biochemical and electron microscopic evidence for site-specific reassociation between spectrin and band 2.1 and 4.1, Proc. Natl. Acad. Sci. USA 76: 5192–5196.PubMedGoogle Scholar
  138. Tyler, J. M., Reinhardt, B. N., and Branton, D. 1980, Associations of erythrocyte membrane proteins: Binding of purified bands 2.1 and 4.1 to spectrin, J. Biol. Chem. 255: 7034–7039.PubMedGoogle Scholar
  139. Ungewickell, E., and Gratzer, W. B., 1978, Self-association of human spectrin. A thermodynamic and kinetic study, Eur. J. Biochem. 88: 379–385.PubMedGoogle Scholar
  140. Ungewickell, A., Bennett, P. M., Calvert, R., Ghanian, V., and Gratzer, W. B., 1979, In vitro formation of a complex between cytoskeletal proteins of the human erythrocyte, Nature 280: 811–814.Google Scholar
  141. Weed, R. I., LaCelle, P. L., and Merrill, E. W., 1969, Metabolic dependence of red cell deformability, J. Clin. Invest. 48: 795–809.PubMedGoogle Scholar
  142. Whitfield, C. F., Culp, E. N., and Goodman, S. R., 1986, Transfer of label from protein 4.1-crosslinker complex to 4.1 membrane binding sites, J. Cell Biol. 103: 542a.Google Scholar
  143. Wolfe, L. C., John, K. M., Falcone, J. C., Byrne, A. M., and Lux, S. E., 1982, A genetic defect in the binding of protein 4.1 to spectrin in a kindred with hereditary spherocytosis, N. Engl. J. Med. 307: 1367–1374.PubMedGoogle Scholar
  144. Yu, J., Fischman, D. A., and Steck, T. L., 1973, Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents, J. Supramol. Struct. 1: 233–248.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Greg B. Ralston
    • 1
  1. 1.Department of BiochemistryUniversity of SydneySydneyAustralia

Personalised recommendations